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Abstract.    Sea waves induce significant pressures on coastal surfaces, especially on rocky vertical cliffs or 
breakwater structures (Peregrine 2003). In the present work, this hydrodynamic pressure is considered as the 
excitation acting on a piezoelectric material sheet, installed on a vertical cliff, and connected to an external 
electric circuit (on land). The whole hydro/piezo/electric system is modeled in the context of linear wave 
theory. The piezoelectric elements are assumed to be small plates, possibly of stack configuration, under a 
specific wiring. They are connected with an external circuit, modeled by a complex impedance, as usually 
happens in preliminary studies (Liang and Liao 2011). The piezoelectric elements are subjected to 
thickness-mode vibrations under the influence of incident harmonic water waves. Full, kinematic and 
dynamic, coupling is implemented along the water-solid interface, using propagation and evanescent modes 
(Athanassoulis and Belibassakis 1999). For most energetically interesting conditions the long-wave theory is 
valid, making the effect of evanescent modes negligible, and permitting us to calculate a closed-form 
solution for the efficiency of the energy harvesting system. It is found that the efficiency is dependent on two 
dimensionless hydro/piezo/electric parameters, and may become significant (as high as 30 – 50%) for 
appropriate combinations of parameter values, which, however, corresponds to exotically flexible 
piezoelectric materials. The existence or the possibility of constructing such kind of materials formulates a 
question to material scientists. 
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1. Introduction 
 

Ocean waves carry huge amount of energy propagating in a thin layer near the surface of the 
sea and, eventually, impinging on the coastline. Being a surface phenomenon, sea waves consist 
one of the most intense natural energy resources. Nowadays this resource has been very well 
documented throughout the world ocean. See, e.g., Pontes, Athanassoulis et al. (1995, 1996), 
Cavaleri, Athanassoulis, Barstow (1999), Barstow and Mørk et al. (2003), Barstow et al. (2009), 
Mørk and Barstow et al. (2010), which describe the results of three European Commission–funded 
projects (WERATLAS, EUROWAVES and WORLDWAVES) studying offshore and nearshore 
wave conditions and wave energy resource.  

In the open sea, especially in the northern oceans, the mean wave power may be more than   
per meter of the wave front (100 kW/m). Of course, as the waves approach the coast, shoaling 
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causes breaking on the free surface and dissipation in the seabed boundary layer, resulting in lower 
figures for the available mean wave power per wave-front meter. Even thought, when the shoreline 
has the form of an (almost) vertical cliff, either rocky or manmade, with appreciable depth in front 
of it, waves impinge on it exerting large pressure loads. The wave climate in such sites has been 
extensively studied, mainly to provide information for the design of breakwaters or for the study of 
the erosive effects on natural coasts, as well as for assessing the available wave potential for 
nearshore and onshore wave energy devices. An extended list of many existing wave energy 
devices can be found in Wikipedia (http://en.wikipedia.org/wiki/Wave_power). In depth 
discussions of the physics principles and the technological aspects of the various devices are 
provided by the relevant papers in the technical literature; modern guides to this huge literature are 
the recently published books by Cruz (2008) and Khaligh and Onar (2010). Types of power take-
off include: hydraulic ram, elastomeric hose pump, pump-to-shore, hydroelectric turbine, 
oscillating water columns in conjunction with air turbine, linear electrical generator, etc. In the 
present work an alternative point of view is adopted. We are going to investigate if it is possible to 
take off wave power directly through a piezoelectric material placed on the cliff.  

Piezoelectricity, known since 1880 thanks to the experimental work by the brothers Pierre and 
Jacques Curie, has been intensively exploited in the recent years for designing energy harvesting 
devices, mainly in microscale. See, e.g., the recent review articles Sodano et al. (2004), Anton and 
Sodano (2007), Priya (2007), and the books by Priya and Inman (2009), Erturk and Inman (2011). 
Most of devices studied or reviewed in the literature are vibration–based energy harvesters, 
transducing the energy of mechanical vibrations to electric power supply of small electronic 
devices. Some concepts appropriate for converting energy from ambient fluid flow into useful 
electrical energy have appeared in the last decade or so. For example, Priya et al. (2005) and 
Myers et al. (2007) designed and tested a piezoelectric windmill, transducing wind energy into 
electricity; Taylor et al. (2001) and Pobering and Schwesinger (2004) studied piezoelectric flag 
generators, consisting of a flexible sheet placed downstream of a bluff body and excited by the von 
Kármán vortex sheet.  

The subject of direct piezoelectric conversion of ocean wave energy is rather undeveloped. The 
main reason for this seems to be the very low frequency regime of sea waves (below to 0.5 Hz). 
Early concepts of piezoelectric wave harvesters, based on piezoelectric films or ropes made of 
Polyvinylidene fluoride (PVDF) (Taylor and Burns 1983, Haeusler and Stein 1985), have not been 
practically applied. The concept of a floating wave carpet, proposed by Koola and Ibragimov 
(2003) could be interesting when combined with an appropriate modeling and analysis of a 
flexible piezo-electric material. Murray and Rastegar (2009) proposed a two-stage piezoelectric 
wave energy harvester, consisting of a primary, low frequency, subsystem (e.g., a heaving buoy), 
which excites a secondary subsystem vibrating at its natural frequency, the latter being orders of 
magnitude higher than the frequency of the primary subsystem. The aforementioned piezo-electric 
wave energy harvesters, as well as other existing variants of them, all belong to the classes of point 
absorbers or attenuators.  

The goal of the present paper is to investigate a terminator-type piezoelectric system that could 
extract electric energy from the direct impact of sea waves, impinging upon a vertical cliff. This 
seems to be the simplest possible configuration of a hydro/piezo/electric system, that could be 
deployed in large scale on the cliffs, especially those ones formed by breakwaters or floating 
breakwaters. Wave energy impinging upon such kind of structures induces large loads that can 
have only catastrophic effects. If a part of it could be transduced into electricity, two advantages 
would be realized: relaxing the exerted loads and gaining useful energy.  
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The structure of the paper is as follows: In Sec. 2 the whole system, consisting of three distinct 
subsystems (the hydrodynamic and the piezoelectric ones, and an external electrical circuit), is 
described in detail. In Sec. 3 the 3-3 mode of the piezoelectric vibration of a single piezoelement 
and the whole piezoelectric sheet covering the cliff, under a specific wiring, are studied. In Sec. 4 
the hydrodynamic problem is formulated and a complete modal representation of the wave 
potential in the vicinity of the vertical cliff is given. Results from Sec. 3 and 4 are exploited in Sec. 
5, where the coupling of the two subsystems is implemented through the interfacial, fluid–solid, 
matching conditions, taking the form of an infinite system of algebraic equations with respect to 
the modal coefficients. In the same section an approximate (yet accurate) closed form expression is 
obtained for the wave reflection coefficient, which controls the energetic coupling of the three 
subsystems. Finally, in Sec. 6, the ohmic resistance of the external circuit optimizing the efficiency 
of the hydro/piezo/electric harvester is found. The optimized efficiency is calculated analytically 
and investigated numerically. It is shown that efficiency may become significant (as high as 30 – 
50%) for appropriate combinations of two dimensionless hydro/piezo/ electric parameters. To 
practically exploit this high efficiency new piezoelectric materials are needed, exhibiting much 
higher flexibility than the usual ones, and high values of the energy conversion factor. The 
possibility of manufacturing such kind of materials remains an open question.  

 
 

2. System configuration 
 
Before proceeding to the consideration of a specific, piezoelectric, wave-energy harvesting 

system, a description of the “virgin site” where this system could be installed in, seems to be 
appropriate. The virgin site would be any vertical cliff, either natural or manmade, as, e.g., a rocky 
cliff, a breakwater or a floating breakwater, with appreciable sea depth in front of it, so that the 
shoaling and dissipation effects to remain mild. Under these conditions, incoming waves induce 
large pressure loads on the vertical cliffs, which can be considered as rigid (non-deformable) 
bodies. The impinging wave energy partly dissipates (due to wave breaking and bottom friction), 
and partly is reflected back to the sea. The vertical cliff, being rigid and not moving, acts as a 
perfect barrier of the energy flow. The proposed concept of wave energy harvesting relies on the 
following observations: if a deformable body is interposed between the rigid vertical cliff and the 
incoming waves, the presence of both pressure on and deformation of the fluid-solid interface 
would result into an energy flow from sea waves to this body. If, in addition, the deformable body 
exhibits piezoelectric properties, part of the energy flowing through the fluid-solid interface would 
be transformed into electrical energy, which could be stored in (or consumed by) an external 
electric circuit, without the intervention of any other mechanical parts.  

Since the present paper aims at a preliminary assessment of such an energy harvesting system, 
we focus on the basic physics facts, disregarding many technical details. Even though, we have to 
make a complete (yet simplified) modeling of three distinct subsystems: the hydrodynamic 
subsystem, i.e., the hydrodynamic wave field in the vicinity of the cliff, the piezoelectric 
subsystem, i.e., the material layer posed on the cliff and facing the action of sea waves, and an 
external electrical circuit, located on land.  

 
2.1 The hydrodynamic subsystem: sea waves impinging into the cliff  
 
Waves impinging into the cliff produce a complicated, nonlinear, slightly dissipative, impact 
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phenomenon, resulting in the development of a fluctuating hydrodynamic pressure pattern on the 
fluid-solid interface. Realistic, wind-generated, sea waves are usually modeled as random waves, 
characterized by means of their spectrum. The angular frequencies ω  may range from 
0.314 rad/sec  to 3.14 rad/sec  (corresponding to periods 2 sec 20 secT< < ), the actual range being 
strongly case and site dependent. The complete modeling of this phenomenon is an extremely 
difficult problem, not fully understood yet, which is out of the scope of the present paper. A 
general description of the phenomenon along with a survey of earlier works has been presented by 
Peregrine (2003). Some aspects of the nonlinear water-wave impact problem on rigid vertical 
surfaces have been recently studied by Molin et al. (2005), Jamois et al. (2006), Molin et al. 
(2010). Advanced methods of numerical simulation of such problems, using moving particles 
techniques and taking into account both nonlinearities and dissipation effects, have also been 
developed recently; see, e.g., Khayyer and Gotoh (2009).  

For reasons explained above, we shall restrict ourselves to a reasonably convenient 
mathematical formulation of the hydrodynamic problem, namely the linear water-wave theory; see, 
e.g., Wehausen and Laitone (1960), Sec. 11. We shall also make the assumptions that the vertical 
cliff has an appreciable horizontal extent and the front of the incident wave is almost aligned to it, 
which permit us to treat the hydrodynamic problem as two-dimensional (2D). In addition, to 
simplify the hydrodynamic analysis, we assume that the seabed is horizontal. A vertical section of 
the fluid domain Ω  is shown in Fig. 1. In the same figure it is also shown the Cartesian 
coordinate system used in the hydrodynamic analysis. The not shown y  axis (perpendicular to 
the paper) extends along the horizontal dimension of the vertical cliff.  

 
 

 

 
Fig. 1 Geometric configuration of the system 

 
 

 
Under the assumption of linearity, the superposition principle is valid, which permits us to 

synthesize any (linear) wave pattern from the monochromatic (frequency domain) solution. Thus, 
focusing on the monochromatic case, we can assume that the velocity field is derived by a velocity 
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potential ( ), ;f x z tΦ , which is expressed in terms of the complex phasor ( ), ;f x z ωΦ  by 
means of the equation  

 

{ }
( ){ }

Φ ( ) Re Φ ( )exp( )

Re Φ ( ) Φ ( ) Φ ( ) exp( )

f f
j

f f f
j I R loc

x,z;t x,z;ω jωt

x,z;ω x,z;ω x,z;ω jωt

= =

= + +
       (1a)  

 
where  

( )0
0

0

cosh
( ) exp( )

2 cosh( )
Df

I
D

k h zjg Hx,z;ω jk x
k hω

Φ
é ù)ë û;                   (1b) 

 
is the incident wave, having amplitude / 2H  
 

( )0
0

0

cosh
( ) exp( )

cosh( )
Df

R
D

k h zjgHx,z;ω W jk x
2 k hω

Φ
é ù)ë û; -                (1c) 

 
is the reflected wave, and ( ), ;f

oc x z ωΦ


 is a local wave field, vanishing exponentially far from 

the cliff. (The exact form of ( ), ;f
oc x z ωΦ


 will be given in Sec.4). In Eqs. (1), 1j ; -  is the 
imaginary unit, g  is the acceleration due to gravity, ω  is the frequency of the monochromatic 
incident wave, 0k  is the corresponding wave number, Dh  is the sea depth in front of the vertical 
cliff and W  is the reflection coefficient. The latter is, in general, complex valued, 

( )Argj WW W e; × , W  being the amplitude attenuation factor and ( )Arg W  being the phase 
shift with respect to the incident wave.  

The hydrodynamic pressure field in the fluid, ( ), ;p x z ω , is given by the linearized 
Bernoulli’s law:  

 
( ) ( ), ; , ;f

fp x z j x zω ρ ω ωΦ; -          (2) 
 

where fρ  is the mass density of sea water. Note that, when the nonlinear effects are taken into 
account, the total hydrodynamic pressure induced on the vertical cliff exhibits, in general, larger 
values than those obtained by means of the linear theory.  

 
2.2 The piezoelectric subsystem: energy harvesting elements on the cliff  
 
Piezoelectricity, initially detected in some crystalline solid materials, is a phenomenon 

according to which an electric field is developed in the material in response to externally applied 
mechanical stresses. It is a reversible process; when an external electric field is applied to the 
piezoelectric material, the latter exhibits deformations. Linear piezoelectricity is quantified 
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macroscopically by means of the piezoelectric constitutive equations, connecting mechanical stress 
{ } { }6

11 22 33 23 31 121
, , , , ,i

i i
σ σ σ σ σ σ σ;

;
;  and electric displacement kD  to mechanical strain 

{ } { }6
11 22 33 23 31 121

, , , 2 , 2 , 2i
i i

e e e e e e e;

;
;  and electric intensity kE   

 
,E

i i k k k i kc e Є Eσ = −    S

i i k k i j jD Є e Ee= +         (3a,b) 
 

where E

i kc  is the elastic stiffness tensor under constant electric intensity, S

i je  is the dielectric 

permittivity tensor under constant strain, and i kЄ  is the piezoelectric stress tensor. The latter 
contains null elements since the piezoelectric effect disappears for certain crystallographic and 
limiting point symmetry groups. (Newnham 2005, Ch. 12.3).  

The widely used piezoelectric materials largely consist of two classes; the piezoelectric 
ceramics (e.g., PZT family) and the electroactive polymers (EAP), as PVDF. Piezoelectric 
ceramics dominate the transducer applications, showing strong piezoelectric effect but are stiff and 
brittle and thus inappropriate, in the form of bulk materials, for energy harvesting applications 
where flexibility is needed (Brockmann 2009, Ch.4). On the other hand, traditional EAP show 
relatively improved flexibility but moderate piezoelectric coefficients (Bar-Cohen 2010). In 
between the two aforementioned classes of materials, lie the piezoelectric composites which 
combine high coupling factors with relatively high mechanical flexibility (Uchino 2010), but their 
properties cannot differ substantially from the properties of their constituent materials. Also 
interesting materials are those manufactured by the newer developments in EAP, such as relaxor 
ferroelectric copolymers and cellular polymers (Bauer and Bauer 2008). Probably the most 
promising materials are the dielectric electroactive polymers (DEAP), exhibiting the ability of 
large deformations along with high values of energy conversion ratio (Carpi et. al. 2008). Let it be 
noted, however, that the electromechanical properties of DEAP do not fit well in the classical 
piezoelectric modeling, followed in this work, since they show viscoelastic behavior and they are 
practically incompressible.  

Piezoelectric materials are available either in small solid pieces or in the form of films or ropes. 
In this conjunction, and in order to exploit the thickness-mode oscillations, the piezo-elements 
considered in the present study are assumed to be small plates with transverse dimensions 1 , 2 , 
of order of magnitude of some centimeters, and thickness h , of order of magnitude of some 
millimeters. One of their surfaces 1 2S = ×   is clamped on the vertical cliff and the other is free 
to oscillate under the influence of the wave impact. Piezoelements are installed contiguously from 
the sea bottom to the mean free surface and are electrically connected in series, forming a vertical 
array of 1M  piezoelements; see Fig. 1. The repetition of this array for an appreciable length 

2 2 2L M;   in the direction of the y − axis (horizontally along the cliff), in conjunction with a 
parallel electric connection between the vertical arrays, results in a two dimensional active zone of 
piezoelements, which is also called the piezoelectric sheet; Fig. 2.  
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Fig. 2 The two-dimensional, cliff-mounded, piezoelectric active zone  
 

 
Two basic technical issues, relevant to the formation and the installation of the piezoelectric 

sheet, are the insulation from the ambient sea water and the fixation on the vertical cliff. Both 
issues are strongly material dependent and they are out of the scope of the present work, which 
aims at a feasibility study of the basic concept.  

 
2.3 The external electrical circuit  
 
In order to take off power from the impinging waves, the output terminals of the system of 

piezoelements should be plugged in an external electrical circuit. A typical choice for the latter is 
the so-called standard energy harvesting (SEH) circuit, including a diode rectifier and a smoothing 
capacitor; see, e.g., Gyomar et al. (2005) and Shu and Lien (2006). A simpler choice, which is the 
usual one in most of the literature emphasizing on the mechanical part of the system, is a standard 
AC circuit, characterized by its impedance  
 

 ( ) ( )Z R j Xω ω; )                            (4) 
 
where R  models the total resistance and ( )X ω  models the total reactance. A thorough 
discussion concerning the effect of the external circuit on the energy flow in piezoelectric 
harvesters can be found in Liang and Liao (2011). In the context of linear theory, the angular 
frequency ω  comes from the monochromatic wave excitation, having a very low value. By 
studying the considered hydro/piezo/electric system connected to the above described circuit, it is 
possible to find a closed form expression for the net (time average) power taken off from the 
waves, which reveals the main (dimensionless) parameters affecting the energy harvesting 
phenomenon.  
 
 
3. The piezoelectric problem 
 

3.1 The piezoelectric problem for a single piezoelement  
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For each piezoelement, a local, 1 2 3( )x x x -Cartesian coordinate system is introduced, with 

ix -axis coinciding with the corresponding principal piezoelectric axis; see Fig. 3. Each piezo-

element is considered geometrically symmetric with respect to the coordinate planes 1 0x ; , 

2 0x ; , 3 0x ; . Face γδ  is clamped (on the vertical cliff), while face αβ  is free to oscillate 
under the influence of incoming sea waves. [Note that in the physical position, faces αβ  and γδ  
of each piezoelement are vertical; cf. Fig. 1]. Both faces αβ  and γδ  are electroded.  

In this paper the thickness-mode vibration is considered, in which the resulting electric 
polarization vector has the same direction as the applied stress (thus 3i j; ; ). Thus, the 
constitutive Eqs. (3(a) and (b)) take the form  

 

3 3 3 3 3 3 3 3 3 3( ; ) ( ; ) ( ; )Ex t c e x t Є E x tσ ; -                    (5a) 
 

3 3 3 3 3 3 3 3 3( ; ) ( ; ) ( ; )SD x t Є e x t E x te; )                   (5b)  
 
where 3 3 3

S Se eº . The external excitation (tensile) stress 3σ̂ , applied to the electroded face αβ , 
equals to p- , where p  is the hydrodynamic pressure; the presence of minus sign is due to the 
fact that p  is always compressive. The applied excitation 3σ̂  gives rise to mechanical 

displacements 3 3( ; )u x t  and voltage difference  
 

( ) ( )1 0( ) ( ) ( ) 2 ; 2 ;e eV t V t V t h t h t∆ Φ Φ ; - ; - -
            

 (6)  
 
between the two faces αβ  and γδ , where 3( ; )e x tΦ   is the electric potential field developed 
inside the piezoelement.  
 
 

 
Fig. 3 Mode 3-3 vibration of a single piezoelement with αβ  and γδ  faces electroded  
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As the physical length (width) of each piezoelement is small in comparison with both the depth 
Dh  of the sea in front of the vertical cliff and the wavelength of sea waves, the applied stress 3σ̂  

(due to sea waves) can be considered almost constant on the face αβ  of each piezoelement. Thus, 
we can consider 3σ̂  equal to the mean value of the hydrodynamic pressure p-  over the face 

αβ , and simplify the piezoelectric problem assuming that all quantities are dependent only on 3  x  
coordinate. In this way, the piezoelectric phenomenon to be studied becomes essentially one 
dimensional (1D).  

The equations governing the piezoelectric phenomenon are Newton’s second law for 
deformable bodies, Maxwell’s equations, the constitutive equations of piezoelectricity, and 
appropriate boundary conditions. See, e.g., Parton and Kudryavtsev (1988), Ch 1, Bardzokas and 
Filshtinsky (2006), Ch. 2, Meitzler et. al. (1987). Note that mechanical and dielectric dissipative 
phenomena are ignored in this study.  

Since the frequency range of sea waves (exciting the piezoelements) is very low in comparison 
with electromagnetic waves frequencies, the equations governing the piezoelectric phenomenon 
are the quasi-static ones. In addition, under the assumption of monochromatic excitation, with 
circular frequency ω , all quantities can be represented by the corresponding phasors, i.e., 
( ) ( ) ( ){ }3 3 3 3; Re ; expju x t u x j tω ω= . Then, for the present case of 1D linear problem in the 

frequency domain, the set of governing equations and boundary conditions takes the form  
 

( ) ( ) ( )
2 2

3 2

33 3 33 3 3 32 2

3 3

; ; ;
e

E

b

u
c x Є x u x

x x
ω ω ρ ω ω

∂ ∂ Φ
+ = −

∂ ∂



         (7) 

 

( ) ( )
22

3

3 3 33 32 2

3 3

; ;
e

S
u

x Є x
x x

e ω ω
∂∂ Φ

=
∂ ∂



                  (8) 

 
( )3 2 ; 0u h ω− =                               (9a) 

 

( ) ( )3

33 33 3

3 3

ˆ2 ; 2 ; ( )
e

E
u

c h Є h
x x

ω ω σ ω
∂ ∂Φ

+ =
∂ ∂



               (9b) 

 
( ) 02 ; ( )e h Vω ωΦ − =                         (10a) 

 
( ) ( )12 ;e h Vω ωΦ =                           (10b)  

 
where bρ  is the mass density of the piezoelement.  

Eq. (7) is Newton’s second law for deformable bodies containing also an electric term due to 
constitutive Eqs. (5(a) and (8)) is Gauss’s law for the electric field containing also an elastic term 
due to constitutive Eq. (5(b)). Eqs. (9(a) and (b)) are mechanical boundary conditions. The 
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problem is supplemented by the electrostatic boundary conditions Eqs. (10(a) and (b)). Eq. (10(a)) 
is a gauge condition which sets the level value of the potential. 0 ( )V ω  is arbitrarily chosen, the 
quantity having physical meaning being the voltage difference ( )V ω∆ . Eq. (10(b)) relates the 
unknown quantity 1 0( ) ( ) ( )V V Vω ω ω∆; )  with the also unknown quantity ( )/ 2 ;e h ωΦ  . 
Accordingly, boundary conditions Eqs. (10(a) and (b)) do not specify boundary data; they just 
specify relations between unknown quantities. As a consequence, the solution of the boundary 
problem (7) - (10) is not unique. As we shall see in the sequel, this lack of boundary data will 
result in an undermined coefficient, the true value of which will be obtained later on by using 
information from the external electric circuit. This complicacy makes the present (direct) 
piezoelectric problem different from the (inverse) piezoelectric problem of free mechanical 
vibrations under the influence of known voltage difference (more extensively studied in the 
literature, see, e.g., Yang (2006b)), where the corresponding boundary conditions do not contain 
unknown quantities, rendering the problem uniquely solvable Ieșan (1990).  

The boundary-value problem (7) - (10) is easily solved, as follows. Integrating twice Eq. (8) and 
using boundary conditions Eqs. (9(a)) and (10(a)), we express ( )3 ;e x ωΦ   in terms of 

( )3 3 ;u x ω  and an unknown coefficient ( )A ω , in the form  
 

( ) ( )33

3 3 3 3 0

3

; ; ( ) ( )
2

e

S

Є h
x u x A x Vω ω ω ω

e
Φ = + − + 

 
 

 . 

 
Substituting this expression for ( )3 ;e x ωΦ   in boundary condition Eq. (9(b)) and in Eq. (7), we 

formulate a boundary value problem for ( )3 3 ;u x ω , containing also ( )A ω . Solving the latter, 

( )3 3 ;u x ω  is calculated in terms of ( ) .A ω  Applying the resulting solution to 3 / 2x h;  and 
invoking Eq. (6), we get  
 

( ) ( )3 3 3 33

33

tan ( )
ˆ2 ; ( ) ( )

D

h
u x h Є A

c

ω
ω σ ω ω

ω
= = −





              (11)  

 
2

33 3 33

1 0

3 33

ˆ ( ) ( ) tan ( )
( ) ( ) ( ) ( )

S D

Є Є A h
V V V A h

c

σ ω ω ω
ω ω ω ω

e ω

−
∆ = − = +





     (12)  

 

where        2

33 33 33 3/D E Sc c Є e= +     and    33

D

bh cω ω ρ≡   (13a,b)  
 
are the elastic stiffness coefficient under constant electric displacement, and the dimensionless 
frequency, respectively.  

Eqs. (11) and (12) can be simplified further, by observing that ω  is a very small quantity in the 
context of the considered application. In fact, taking into account that for common piezo-elements 
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the orders of magnitude of the involved quantities are: 4 3~ (10 / )b O kg mρ , 10

33 ~ (10 )Dc O Pa , 
2

max ~ (10 )h h O m−≤  (see, e.g., Bauer and Bauer 2008, Bloomfield 1994, Smith and Auld 1991, 

APC 2002), and that for sea waves ~ (1 / )O rad sω , we find that 7~ (10 )Oω −
 .  

Thus, ( )tan 1ω ω ≈  , and Eqs. (11) and (12) can be safely simplified to  

 

( )3 3 3 33

33

ˆ2 ; ( ) ( )
D

h
u x h Є A

c
ω σ ω ω= = −                      (14)  

 
2

33 3 33

1 0

3 33

ˆ ( ) ( )
( ) ( ) ( ) ( )

S D

Є Є A h
V V V A h

c

σ ω ω
ω ω ω ω

e

−
∆ = − = +

            (15)  

 

The undetermined coefficient ( )A ω  will be now expressed in terms of the current ( )I I ω;  
flowing through the piezoelement (and through the external circuit).  

To bring the electric current into play, we need some (simplified) electrodynamic equation, not 
included in the quasi-static problem (7) - (10). Since the magnetic field is negligible, the additional 
electrodynamic equation can be thought in various different ways, e.g., either as the time 
derivative of Gauss’s law (Erturk and Inman 2011, Sec. 3.1.3, Parton and Kudryavtsev 1988, Sec. 
1.3), or as the conservation of electric charge, or as a degenerate form of Ampère’s law which 
provide the definition of displacement current. In any case, for the present 1D piezoelectric 
problem, the additional equation for the electric current has the form 
 

3/I S D;                                 (16)  
 
where S  is the area of each of the electroded surfaces of the piezoelement. Using constitutive 
relation Eq.(5(b)) and Eq. (16) is written as  
 

( )3 3 3 3 3
SI j S Є e Eω e; )                         (17)  

 
Recalling that 3 3 3/e u x= ∂ ∂  and 3 3/elE x= −∂Φ ∂ , we obtain, for the case of 1ω <<  

 

3 3 3
3

33

ˆ ( ) ( )
D

Є A
e

c

σ ω ω-
; ,   

2
3 3 3 3 3

3

3 3 3

ˆ ( ) ( )
( )

S D

Є Є A
E A

c

σ ω ω
ω

e

-
; - -      (18a,b)  

 
Substituting Eqs. (18(a) and (b)) into Eq. (17) we get  

 

3( ) ( )SI j S Aω ω e ω; -                   (19)  
 

Now, since the voltage, Eq. (15), and the current, Eq. (19), are both expressed in terms of 
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coefficient ( )A ω , it is clear that coupling of the piezoelement with an external electrical circuit 
would provide us with a specific value of ( )A ω  and, thus, a complete solution of the 
piezoelectric problem.  

For comparison purposes we consider here the two limiting cases, namely, the open-electrode 
piezoelement ( ( ) 0I ω ; ), and the short-circuit piezoelement ( ( ) 0V ω∆ = ). In the first case, 

( ) 0A ω ;  and thus, from Eq. (15), we get ( )( )33 3 33 3
ˆ( ) / / ( )S DV Є h cω e σ ω∆ = , a result also 

given by APC (2002), Table 1.8. In the second case, combining ( ) 0V ω∆ =  with Eq. (15), we 

obtain ( )2 2
3 3 3

ˆ( ) ( ) 1t tA k Є kω σ ω;- - , where  
 

2
3 32

3 3 3

t S D

Є
k

ce
;                            (20)  

 
is the energy conversion (or coupling) factor. Introducing the above expression for ( )A ω  into Eq. 
(14) we obtain 2

3 3 33 33 3
ˆ ˆ( ) ( ) / ((1 ) ) ( / ) ( )D E

tu h k c h cω σ ω σ ω= − = , in accordance with Preumont (2011), 

Sec. 3.6.2. For a physical interpretation of 2
tk  and the derivation of equation ( )2

3 3 3 31E D
tc k c; - , 

see Jaffe et. al. (1971), Ch. 3, Sec. C.1. Furthermore, in Jaffe et. al. (1971), Ch. 2, Sec. 2, it is 
proven that 20 1tk< < .  
 

3.2 The system of piezoelements on the vertical cliff in series connection  
 
We shall now proceed to considering the whole active zone. Various connections are possible 

between the electrodes of adjacent piezoelements that form each vertical array. In the present work 
a series connection has been selected, as depicted in Fig. 4.  

 
 

 

 
 

Fig. 4 Series connection of piezoelements forming one vertical array  
 
 

The results obtained in previous subsection, for a single piezoelement, can be applied to each 
piezoelement of the group. All quantities associated with the m- th piezoelement, e.g., 

( )3 2 ,u h ω , 3
ˆ ( )σ ω , etc., will be now distinguished by a superscript m  in parenthesis, e.g., 
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( )( )
3 2 ,mu h ω , ( )

3
ˆ ( )mσ ω , etc.. Considering all piezoelements being of the same material and of the 

same dimensions, we do not use the m  superscript for material properties and element 
dimensions. On the basis of the series connection of adjacent piezoelements, ( ) ( ) ( )mI Iω ω; , 

( ) ( 1)
0

m mV V -;  and ( ) ( )
1

m mV V; ,  11, 2, ,m M;  . Using Eq. (11), the voltages ( ) ( )mV ω  at the 
output electrode of each piezoelement are given by (see also Fig. 4)   

 
( ) 2 ( )

33 3 33( ) ( 1) ( )

3 33

ˆ ( ) ( )
( ) ( ) ( )

m m

m m m

S D

Є Є A h
V V A h

c

σ ω ω
ω ω ω

e
−

−
− = +

            (21)  

 

where     ( )

3

1

3

1
ˆ ( ) ( ; )ˆm

m th
piezoelement

z dzσ ω ωσ−= ∫


                   (22)  

 
and 3

ˆ ˆ( ; ) ( ; ), 0Dz p z h zσ ω ω= − − ≤ ≤ , z  being the global vertical coordinate; see Fig. 1.  

Setting (0) 0V ;  on the first electrode of the first piezoelement, and summing up all Eqs. (21), 
we find the total voltage difference  

 

1

1 1

1

( ) 2 ( )

33 3 33

( ) ( )

3 33

1 1

1

ˆ ( ) ( )

( ) ( ) ( )

m m

M m

S D

M M

M
m m

m

Є Є A h

V V h A
c

σ ω ω

ω ω ω
e

= =

=

−

∆ = = +

 
 
 

∑ ∑
∑           (23)  

 
Applying Ohm’s law to the external circuit, represented here by an equivalent impedance 

( )Z ω , we get the following equation for the current   
 

 

1 1

1

( ) 2 ( )

33 3 33

( )

3 33

1 1

1

ˆ ( ) ( )
( )

( ) ( )
( ) ( ) ( )

m m

m

S D

M M

M
m m

m

Є Є A h
V h

I A
Z c Z Z

σ ω ω
ω

ω ω
ω e ω ω

= =

=

−
∆

= = +

 
 
 

∑ ∑
∑         (24)  

 
As the piezoelements are connected in series, the current ( )I ω  is common over the whole 

circuit. Thus, Eq. (19), applied to each piezoelement, takes the form  
 

1( )( ) (1) ( )

3( ) ( ) ... ... MS m mI j SA A A A Aω ωe ω= − ⇒ = = = = =                 (25)  
 

By introducing the piezoelectric constant  
 

3
0

S S
C

h

e
;

                               
(26)  

 
called the clamped capacitance (of each piezoelement), [for a physical interpretation see, e.g., 
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Lefeuvre et. al. (2010), Guyomar et. al. (2005)], and setting  
 

 
2

2

0 1

( )
(1 ) ( ) ( )/

t
t

t

k

k j C M Z
ω

ω ω
=

− +
E                        (27)  

 
the system of Eqs. (24) and (25) provides the following solution for the common value of A ’s, 

( )A ω  
1

( )

3

33 1 1

( ) 1
ˆ( ) ( )t m

M

m

A
Є M

ω
ω σ ω

=

= − ∑
E

                         (28)  

 
Substituting Eq. (28) into Eq. (24), we obtain the total voltage output 
 

1

( )

0 3
133 1

( ) 1
ˆ( ) ( ) ( ) ( ) ( )

M
t m

m

V I Z j C Z h
Є M

ω
ω ω ω ω ω σ ω

=

∆ = = ∑
E

            (29)  

 
Eq. (29) provides us with the solution of the piezoelectric system connected with an external 

circuit of equivalent impedance ( )Z ω , in terms of the applied stress ( )
3

ˆ ( )mσ ω . However, in order 
to implement the coupling of this (sub)system with the water wave impinging on the cliff (given 
by Eqs. (42) and (43)), we need to find a relation between the piezoelements face velocities 

( )( )
3 3 2 ;mj u x hω ω;  and the excitation stresses ( )

3
ˆ ( )mσ ω . To this aim, we come back to the Eq. 

(14), written for each piezoelement, and substitute ( )A ω  from Eq. (28)  
 

        
1

( ) ( ) ( )

3 3 3 3

33 33 1 1

( ) 1
ˆ ˆ( / 2; ) ( ) ( ), 1, ...,m m mt

D D

M

m

hh
u x h m M

c c M

ω
ω σ ω σ ω

=

= = + =∑E
          (30) 

 
Since the vertical width 1  of each piezoelement is only a small fraction of the water-wave 

length, the stress variation over the face αβ  of each piezoelement is negligible, which implies 

that the mean excitation stress ( )
3

ˆ mσ  is approximately equal to 3
ˆ ˆ( ; ) ( ; )z p zσ ω ω= − , with z  

restricted to vary over the face αβ  of the m- th piezoelement. Moreover, the sum of the mean 
stresses applied over the totality of piezoelements, can be written, using Eq. (22), as  

 
1 1

( )

3 3 3
1

1 1
ˆ ˆ ˆ( ) ( ; ) ( )

D

m

hD

M

m

z dz
M h

σ ω σ ω σ ω
−=

= =∑ ∫                   (31) 

 
where ( )3σ̂ ω  is the mean excitation stress over the whole vertical cliff. Thus, Eq. (30) can be 
reformulated in a continuous fashion in the form  
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3 3 3

33 33

ˆ ˆ ˆ( ; ) ( ; ) ( ) ( ),tD D

h h
u z z

c c
ω σ ω ω σ ω= + E      0Dh z− ≤ ≤            (32) 

where 3
ˆ ( ; )u z ω  ( )

3 3( / 2; )mu x h ω≈ = , for z  varying over the face αβ  of the m- th piezo-
element. Eq. (32) shows that the mechanical displacement of the interface c∂Ω



 (the outer face of 
the piezoelectric sheet covering the cliff) comes from two terms, a local one and a global one. The 
first is of elastic nature, having a local dependence on the applied pressure and stiffness coefficient 

2

33 33 33 3/D E Sc c Є e= + . The presence of 33
Dc , which is greater than the standard 3 3

Ec  coefficient 
appearing in the constitutive Eq. (5(a)), models the piezoelectric stiffening phenomenon. (For a 
general discussion and mathematical formulation of piezoelectric stiffening see Auld (1969) and 
Yang (2006a), Sec. 2.2.1.) The second term is of purely piezoelectric nature, it has a global 
dependence on the applied pressure, and is also dependent on the external electric circuit 
characteristics through the factor ( )t ωE . 

Let it be noted that, by substituting Eq. (30) into Eq. (29) for the case of the single piezoelement 
( 1 1M ; ), the following relation between ( )V ω∆  and 3

ˆ ( )u ω  is obtained 
 

( )3 0
ˆ( ) ( ) ( ) / 1 ( )V j a Z u j C Zω ω ω ω ω ω∆ ; ) ,    with 3 3 /a Є S h;      (33)  

 
a result also found by Guyomar et. al. (2005). 
 

3.3 Power flow relations 
 

Our main goal in this paper is to investigate the possibility of extracting power from the 
incoming sea waves and deliver it to an external circuit, through the intervention of a piezoelectric 
sheet covering the cliff. We are now focusing on the calculation of this power flow. The net (time 
average) power flowing through the piezoelectric sheet covering an area 2Dh L´  of the cliff (see 
Fig. 2) is given by the equation   
 

piezo 3
2 3

0

0

ˆ ( ; )1
ˆ( ) ( ; )P

D

c

t T z

t z h

u z t
L z t dzdt

T t
ω σ

= =

= = −

∂
=

∂∫ ∫

                 (34) 

 
where 2 /T π ω;  is the period of the oscillating system (the same as the period of the incoming 
wave), and the factor 2L  accounts for the horizontal extent of the piezoelectric sheet. Using 
phasors, the net power flow is written in the form  
 

piezo piezo

2 3 3

01
ˆ ˆ( ) Re ( ; ) ( ; )

2
P P

D

c c j

z

z h

L j u z z dzω ω ω σ ω∗

=

=

= =
 
 
 
∫ 

             (35)  

 
where the asterisk denotes the complex conjugate. Using Eq. (32), we easily see that the elastic 
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part of the velocity ( ( )33 3
ˆ/ ( ; )Dj h c zω σ ω ) does not contribute to the power flow (as expected), 

which takes finally the form  
 

{ } 2piezo

2 3

33

1
ˆ( ) Im ( ) ( ) ( )

2
Pc t DD

h
h L

c
ω ω ω σ ω= −



E                    (36) 

 
Using Eq. (27) and decomposing the complex impedance ( ) ( )Z R j Xω ω; ) , it can be 

checked that piezo ( ) 0 0Pc Rω > ⇔ >


, the latter being always valid. 

Besides, the net electric power ( )PZ ω  consumed by the external circuit is calculated in terms 

of the electric quantities tot ( )V ω∆  and tot ( )I ω . Due to the parallel electrical connection between 
the vertical arrays and the identical electrical quantities of each array, it holds true that 

tot ( ) ( )V Vω ω∆ ∆;  and tot 2 2 2/I M I L I; ;  , where 2M  is the number of vertical arrays 

that form the active zone. Thus, ( )PZ ω  is calculated as 
 

{ } { }

{ }

2

2

2 2

1 1
( ) Re ( ) ( ) Re ( ) ( )

2 2

1 ( ) 1 ( )
Re ( ) Re ( )

2 ( ) 2 ( )

PZ j tot tot j

j j

V I M V I

V V
M V M Z

Z Z

ω ω ω ω ω

ω ω
ω ω

ω ω

∗ ∗

∗ ∗

∗ ∗

= ∆ = ∆ =

∆ ∆
= ∆ =

 
 
 

              (37) 

 

 
 

Using Eqs. (27) and (29), we get  
 

2
222 2

2 0 32

33

1
ˆ( ) ( ) ( )

2
PZ t

h
M C R

Є
ω ω ω σ ω= E                        (38) 

 
 

Calculating { }Im ( )t ωE  and 
2

( )t ωE , and recalling the definitions of the quantities 0C  and 
2
tk  (see Eqs. (26) and (20)), we can show that piezo ( ) ( )P Pc Zω ω;



. Thus, the whole net power 
flowing through the piezoelectric sheet is delivered at the external circuit. This is a statement of 
the conservation of energy, since we have neglected the dissipation within the piezoelements.  
 
 
4. The hydrodynamic problem 
 

4.1 Mathematical formulation of the hydrodynamic boundary-value problem 
 
The 2D liquid domain Ω  extends from the seabed ( )Dz h

∏
∂Ω = − up to the free surface 

( )( ; )F z x tη∂Ω = , and from the vertical cliff c∂Ω


 up to infinity ∞∂Ω ; see Fig.1. Two 

hydrodynamic fields are involved in the problem: the velocity potential field ( ), ;f x z tΦ , and the 

68



 
 
 
 
 
 

G.A. Athanassoulis and K.I. Mamis 

pressure field ( ), ;p x z t . Both fields are independent from the y  coordinate, in accordance with 
the 2D character of the problem, as discussed in subsection 2.2. In the context of linear water-wave 
theory, the domain of definition of velocity potential ( ), ;f x z tΦ  is restricted to the fixed 
domain { }0 0, 0Dh z xΩ = − < < < < +∞ , i.e., to a half strip with plane boundaries.  

The complete, linearized, boundary-value problem for the total wave potential ( ), ;f x z ωΦ , in 
the frequency domain, is formulated as follows (see, e.g., Wehausen and Laitone (1960), Sec. 11, 
Stoker (1957), Sec. 3.1, or Mei et al. (2005), Sec. 1.4)  

 
( ) 0, ; 0 , inf x z ω∆Φ Ω;                 (39)  

 

0( , 0; ) ( , 0; ) 0,
f

fx z x z
z

ω µ ω
∂Φ

= − Φ = =
∂

     ,/2
0 gωµ =    )on     (

0FΩ∂       (40) 

 

( , ; ) 0,
f

Dx z h
z

ω
∂Φ

= − =
∂

     )on     ( ΠΩ∂                    (41) 

 

3ˆ( 0, ; ) ( ; ),
f

x z j u z
x

ω ω ω
∂Φ

= =
∂

      )(on    
cΩ∂                (42) 

 
),;(ˆ);,0( 3 ωσω zzxp −==         )(on    

cΩ∂                    (43) 
 

,f
R

f
I

f Φ+Φ→Φ      when     , ( . ., at )x i e ∞→ +∞ ∂Ω            (44) 
 
where ( ), ;f f

I I x z ωΦ Φ;  is the incident wave, and ( ), ;f f
R R x z ωΦ Φ;  is the reflected 

wave, already prescribed by Eqs. (1(b) and (c)). The pressure ( ), ;p x z ω  is given by the 
linearized Bernoulli’s law, Eq. (2).  

Conditions (42) and (43) are matching conditions, ensuring the continuity of normal velocity 
and normal pressure through the fluid-solid interface 

cΩ∂ , respectively. These conditions match 
the hydrodynamic quantities fΦ and p with the elastodynamic quantities 3û  and 3σ̂  and, 
through them, with the piezo-electric problem.  

 
4.2 Modal representation of the wave potential  
 
The solution of the coupled problem is greatly facilitated by means of the following modal 

representation of the wave potential:  
 

Modal Representation Theorem of the Wave Potential: Every function fΦ  defined in the 
half strip 0Ω , satisfying the Laplace Eq. (39) therein, the free-surface boundary condition (40) 
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on )0(
0

=Ω∂ zF , the seabed boundary condition (41) on )( Dhz −=Ω∂ Π , and the condition 

( , ; ) .,f x z M constωΦ ≤ = , 0in Ω , admits of the following representation  

 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0, ; exp exp , ;
2 2

f f
oc

j g H j g H
x z Z z j k x W Z z j k x x zω ω

ω ω
Φ Φ; ) - )



   (45) 

 
where the first term in the right-hand side of the above equation represents the incident wave, the 
second term represents the reflected wave, and the third term, ( ), ;f

oc x z ωΦ


, represents a local 
wave field, vanishing exponentially far from the cliff, which can be expanded in the form of an 
infinite series of evanescent modes, as follows 

 

1 1
( , ; ) ( , ; ) ( ) exp( )n n n

f f
oc n n nx z x z C Z z k xω ω

∞ ∞

= =
Φ = Φ = −∑ ∑



               (46) 
 

( )0Z z , ( )nZ z ,  1, 2 , 3 , ...n ; , are the vertical eigenfunctions of the water-wave problem, 
given by the equations  
 

( )
( )
( ) ( )

( )
( )

0

0

0

cosh cos
, , 1, 2 ,

cosh cos
D n D

n

D n D

k h z k h z
Z z Z z n

k h k h

+ +
= = =

      
 . (47a,b)  

 
The constants 0k  and nk , 1, 2 , 3 , ...n ; , appearing in the above equations are the positive 

roots of the dispersion relation  
 

( )0
0

0

tanh Dk h
k

µ
; ,      ( )0 tan n D

n

k h
k

µ
; -    (48a,b) 

 
where Dh  is the (constant) sea depth.  

The coefficients , nW C , 1, 2 , 3 , ...n ; , are free; they can be determined by means of the 

boundary (matching) conditions imposed on the vertical boundary surfaces 
cΩ∂ , ∞Ω∂ . The 

above representation theorem traces back to Kreisel (1949). It is also discussed by Wehausen & 
Laitone (1960), Sec. 17 and Mei (2005), Sec. 8.4.1, and it has been extensively used in the study 
of various water wave problems over a locally varying bathymetry (see, e.g., Bai and Yeung 
(1974), Lenoir and Tounsi (1988), Athanassoulis and Belibassakis (1999), Belibassakis and 
Athanassoulis (2005)).  

Using Eqs. (45) and (46) we easily obtain representations of the horizontal wave velocity 

,
ˆ ( ; ) ( 0, ; ) /f f

x z x z xω ωΦ = ∂Φ = ∂  and the pressure ( ) ( )ˆ ; 0, ;p z p x zω ω; ;  on the fluid-solid 

interface
cΩ∂ , in terms of the unknown coefficients , nW C , 1, 2 , 3 , ...n ; . These 

representations will be exploited in the next section in order to solve the coupled problem.  
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4.3 Power flow relations 
 
The net (time average) power flowing towards the cliff through a vertical section at any 

position x a;  within the liquid domain (having horizontal extent 2L , normally to the wave 
front) is given by the equation  

 

2 ,

0

0

1
P ( , ; ) ( , ; )  

D

f

x

t T z
f

a
t z h

L p x a z t x a z t dzdt
T

= =

= = −

= − = Φ =∫ ∫                (49) 

 
where , ( , ; ) ( , ; ) /f f

x x a z t x a z t xΦ = = ∂Φ = ∂  and 2 /T π ω;  is the period of the wave. Passing 
to phasors, Eq. (49) takes the form  
 

( )2 ,

01
P ( ) Re ( , ; ) ( , ; )

2
D

f f f

a j f x

h

L j x a z x a z dzω ω ρ ω ω
∗

−

= Φ = Φ =
 
 
 

∫            (50) 

 
As expected from energy considerations (and it can be proved by using Green’s Theorem) the 

above quantity is independent from the position x a;  of the considered section. Accordingly, 

the easiest way to calculate ( )P f
a ω  (in terms of hydrodynamic quantities) is by letting ∞→a  

and using Eq. (45) keeping only the first two (non-evanescent) modes. After straightforward 
calculations, we obtain  
 

 ( ) 20 22
2 0

0

1
( ) 1

8
P f

a f

k
g H L W Zω ρ ω

µ
; -                (51)  

 
On the other hand, if we apply Eq. (49) to 0x ; , and take into account the matching 

conditions (42) and (43), we readily see that 0 ( )P f
a ω;  is exactly the power flowing through the 

fluid-solid interface 
cΩ∂  towards the piezoelements, which, finally, is consumed by the external 

circuit; see Eq. (38). The equations  
 

piezo
0( ) ( ) ( ) ( ) ( )P P P P Pf f f

a a c Zω ω ω ω ω
¥ ;; ; ; ;        (52) 

 
express the conservation of energy under the idealized conditions that the dissipation during the 
propagation of the sea waves as well as the dissipation in the piezoelements are negligible.  
 
 
5. Solution of the coupled problem 
 

The dynamical coupling between the piezoelectric and hydrodynamic problem is realized by 
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means of the matching conditions (42) and (43). Combining these two equations with Eq. (32), we 
obtain the following condition on the fluid-solid interface 

cΩ∂   
 

0

33 33

,

( )ˆ ˆ ˆ( ; ) ( ; ) ( ; ) 0
D

t

D D
hD

f
x

h h
z j p z j p z dz

c c h

ω
ω ω ω ω ω

−

Φ + + =∫
E

               (53) 

 
This is a non-local (because of the last term) condition connecting the hydrodynamic fields 

( ), ;f x z ωΦ  and ( ), ;p x z ω  at 0x ; .  
 

5.1 Formulation of infinite system of equations with respect to the modal coefficients  
 
The modal expansion, given by Eqs. (45) and (46), permits us to obtain modal expansions for 

the functions , ( 0, ; ) ( 0, ; ) /f f

x x z t x z t xΦ = = ∂Φ = ∂  and ( ) ( )ˆ ; 0 , ;p z p x zω ω; ; , in terms of the 
expansion coefficients W , nC , 1, 2 , 3 , ...n ; . Substituting these modal expansions into Eq. (53), 
and performing the appropriate algebraic manipulations, we finally obtain  

{ } { }0 0 0 0 0 0
1

( ) ( ) ( ) ( )n n n n
n

a Z z Z z W a Z z Z zβ γ β γ
∞

=

+ + + + + =∑T T  

           = 0 0 0 0 0 0( ) ( ) , 0Da Z z Z z h zβ γ+ + − ≤ ≤T                  (54) 
 

where  0
0 ,

2 n n

g k H
kα α

ω
; ; - ,  2

0

33 33

,
2f fD D

h H h
j g

c c
β ω ρ β ρ ω; ;    (55)  

 

and       
02

33 33

0

( ) ( )
, , , ( )

2 D

t t
f f nD D h

D D

n

H h h
j g Z z dz

c h c h

ω ω
γ ω ρ γ ρ ω

−
= = = ∫

E E
I         (56)  

 
Recall now that the vertical eigenfunctions ( ) ( )0 , , 1, 2 ,nZ z Z z n =  , as defined by Eq. (47 

(a) and (b)), constitute an orthogonal system of functions, complete in the Hilbert space 
( )2 , 0DL h- . Accordingly, by projecting both members of Eq. (54) on each one of the basis 

functions ( )0Z z , ( ) , 1, 2 ,nZ z n =  , we obtain the following infinite system of equations with 

respect to the unknown coefficients W , nC   

{ }00 0 00 0 00 00 00
1

 n n
n

W Cγ γ γ
∞

=

+ −Κ + Λ + Λ = Κ − Λ∑                      (57a) 

 

{ }0 0 0 0
1

,m n n n m n m n m
n

W Cγ δ γ λ
∞

=

Λ + Κ + Λ = − Λ∑ m = 1,2.3,…,             (57b) 

 
where  
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( ) ( )2 2

00 0 0 0 00 0 0 0 0 0 0, , n n nZ Zα β α βΚ Κ Λ Λ) -; ) ; - ; ; I I    (58) 
 

( ) 2
,n n n n n m m n n mZα βΚ Λ Λ; ) = = I I ,   (59)  

 

and 2 0 2 ( )
D

n nh
Z Z z dz

−
= ∫  is the square of the norm of ( )nZ z  in the space ( )2 , 0DL h- .  

Using Eq. (57(a)) we eliminate W  from Eq. (57(b)), which then take the form 
 

0 00 00 00
0 0

1 00 0 00 00 0 00

1, 2,,n m
n n n m n m n m

n

C m
γ γ

δ γ γ
γ γ

−∞

=

+

+ +

Λ Λ Κ + Κ
Κ + Λ − = Λ =

Κ + Λ Κ + Λ

  
 
  

∑       (60) 

 
For our purposes, the most important coefficient is the reflection coefficient W , which is exp-

ressed, in terms of nC , by means of the equation (obtained from (57(a)) 
 

0 00 0 00

1 00 0 00 00 0 00

n
n

n

W C
γ γ

γ γ

∞

=

−

+ +

Λ Κ − Λ
= − +

Κ + Λ Κ + Λ
∑                      (61) 

 
Since the coefficients ( )0 00 0 00/nγ γΛ Κ Λ) ) , multiplying nC  in Eq. (61), are about four 

orders of magnitude smaller than the nC − independent term ( ) ( )00 0 00 00 0 00/γ γΚ Λ Κ Λ- )- ) , it 

is expected that the effect of the nC − dependent terms on W  should be small. This has been 
definitely verified by means of detailed numerical calculations, shown that the effect of the 

nC − dependent series on the values of W  is less than 0.1%. Thus, it is safe to proceed with our 

analysis by keeping only the second ( nC − independent) term in Eq. (61). This approximation is 
compatible with the long-wave theory for water waves.  

 
5.2 Closed-form solution for the reflection coefficient  
 
Under the (numerically confirmed) simplification that the nC  coefficients do not practically 

affect the reflection coefficient W , the second term of the right-hand side of Eq. (61) provides us 
with a closed-form solution for W . Recalling the definitions (58) and (59) of the quantities 00Κ ) , 

0nΛ , 00Λ , in conjunction with Eqs. (55) and (56) defining 0 0 0, ,α β γ , the closed-form 
expression for the reflection coefficient W  can be written in the form 
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33

33

1 (1 ( ))

1 (1 ( ))

tD

tD

h
j

c
W

h
j

c

ω

ω

− +

=
+ +

Y

Y

H E

H E

                             (62) 

 
where           0tanh( )f Dg k hρ=H ,      2

0 0 0( ) / ( )Dh Z=Y I I           (63a,b)  
 
are two purely hydrodynamic, real-valued (positive), quantities. H  is analogous to the specific 
weight of sea water (also affected by the sea depth), while Y  represents the effect of the vertical 
structure of the hydrodynamic pressure. Note that the numerical values of these two hydrodynamic 
quantities satisfy the following estimates  
 

4~ ( ) (10 / )fO g O Pa mρ =H       0   1and  < ≤Y                  (64a,b)   
 

Inequality 1£Y  is obtained by applying the Cauchy-Schwartz inequality to the functions 

0 ( )Z z  and 1, [ ]0,Dhz −∈ .  
As is seen from Eq. (62), the reflection coefficient W  is dependent only on the following 

(dimensionless) coefficients  
 

33

0
D

h

c
ϖ = >H      and   ( )tλ ω= ∈Y E c                (65a,b) 

 
which realize the energetic coupling between the three subsystems (hydrodynamic, piezoelectric 
and external circuit). We shall call these coefficients hydro/piezo/electric compliances. From the 
definition of quantity ( )t ωE , Eq. (27), we obtain  
 

2 2

2 2 2 2
( ) t t

t

k k
j

χ
ω

χ χ

Π

Π Π
; -

) )
E                        (66)  

 
where 2

0 1~ 1 ( / ) ( )tk C M Xω ωΠ − −     and   0 1( / ) 0C M Rχ ω= >            
Furthermore, since the external inductance ( )X ω  is expected to take small values, we can 

assume that 21 0tkΠ ≈ − > . Taking into account Eqs. (64(b)) and (65), and keeping track of the 
dependence on χ , the real and the imaginary parts of λ  are expressed as follows 
 

( ) { } ( ) { }2 2 2 2
Re , ImR j t J j t

χ
λ χ σ λ χ σ

χ χ

Π

Π Π
; ; ; ; -

) )
Y E Y E    (68a,b)  
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where  2
tkσ º Y ,  is a partial hydro/piezo/electric compliance. Using the notation introduced 

above, we can write 2W  in the form  
 

( )
( ) ( )[ ] ( )
( ) ( )[ ] ( )

( ) ( )( )
( ) ( )( )

22 2 2
2

22 2 2

1 2 1 , ,
.

, ,1 2 1
J R J R J

R JJ R J

F
W

G

ϖ λ χ ϖ λ χ ϖ λ χ ϖ λ χ λ χ
χ

ϖ λ χ λ χϖ λ χ ϖ λ χ ϖ λ χ

) ) ) )
; º

- ) ) )
    (69) 

  
 
 
6. Optimization and efficiency of the hydro/piezo/electric harvester 
 

Combining Eqs. (51), (52) with Eq. (69), we readily see that the ratio of the total power taken off 
the impinging waves over the incident wave power, that is, the efficiency of the 
hydro/piezo/electric harvester described in Sec. 2, can be expressed as 
 

2
0 ( , ) / ( ) 1 ( )P Pf f

a I Wω χ ω χ; ; -                      (70)  
 

where 
2

20
2 0

0

1
( )

2 2
P f

f
I

kH
g L Zω ρ ω

µ
=  

 
 

 is the incident wave power. Thus, it is clear that the 

coupling phenomenon between the hydrodynamic wave field, the piezoelectrically vibrating 
elements and the external electric circuit is solely modeled by 21 ( )W χ- . Since in the variable 

( )0 1/C M Rχ ω; , the easily adjustable ohmic resistance R  of the external circuit is involved, 

it is expedient to maximize 21 ( )W χ-  (equivalently, the taken-off power) with regard to χ , 
following the common practice in piezoelectric harvesters (Guyomar et al. 2005, Lefeuvre et al. 
2010). Using the first derivative test, we have to solve the equation  
 

21 ( ) / 0 0
dF dG

d W d G F
d d

χ χ
χ χ

− = ⇔ − =
       

             (71) 

 
After some algebraic manipulations, we find that Eq. (71) reduces to  
 

( ) ( )( )22 2 2 2 21 0χ χ µΠ Π) - ) ;                     (72)  
 

where                 
2

2 2

2
, 2

1

σ σ σ ϖ
µ µ ϖ

ϖ
≡ = +

Π Π Π +
   
   
   

                 (73) 

 
That is, Eq. (71) has the double negative root 2 2

1, 2
χ Π; - , which is of no importance for our 

purposes, and the positive root ( )2 2 2

3
1χ µΠ; ) , where  
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( )
2 2

2 2

0 11 / ( ) 1
t t

t t

k k

k C M X k

σ

ω ω
= ≈

Π − − −

Y Y
                    (74) 

 
[The second (simplified) form of /σ Π  is valid since the reactance ( )X ω  is expected to be 
much smaller than )10(~)/(/)1( 12

10
2 Ω− OMCkt ω .]  

Thus, the value ( )opt 0 1 opt/ 0C M Rχ χ ω; ; >  which maximizes the taken-off power is 

given by the formula 2
opt 1χ µΠ; ) , which leads to the following optimal external ohmic 

resistance value optR   
 

2 2
2 2

0 1 0 1

1 1
( ) 1 1

( / ) ( / )
t t

opt

k k
R X

C M C M
ω µ µ

ω ω
− −

= − + ≈ +
 
 
 

              (75) 

 
Introducing optχ  in Eq. (69), the following form for the electrically optimized efficiency is 

obtained  

( ) ( )( )
( )
( ) ( )

( )

2

2 2

2 2
2 2

2 2

1 ,

4 1 / , / 2 / ,

1 / ,
1 2 2 / , 2 ( )

2 / , 2 / ,

opt
W

σ
ϖ

σ
ω µ σ ϖ µ σ ϖ

µ σ ϖσ ϖ σ σ
ϖ µ σ ϖ

µ σ ϖ µ σ ϖ

− = =
Π

+ Π + Π
Π=

+ Π
+ + + Π + +

Π + Π + Π Π Π

 
 
 

 
  

W

  (76) 

 
It should be stressed that the optimum value 2

opt
1 W-  is dependent only on the two 

dimensionless, positive-valued quantities ϖ  and /σ Π , which appropriately combine the 
hydrodynamic, the piezoelectric and the circuit characteristics affecting the energetic coupling of 
the system. Furthermore, taking into account the definitions of σ  and Π , and the facts that 

( 0 , 1]ÎY  and (for many interesting materials) )5.0,01.0(2 ∈tk , we easily find that /σ Π  
ranges (for all realistic situations) from 0 to (approximately) 1.0.  

The quantity 2

opt
1 W-  as a function of the two arguments ϖ  and /σ Π  is shown in Fig. 5. 

By this figure, it is seen that, for every value of /σ Π , the efficiency of the system is maximized 
for values of )10(~ 0Oϖ , and that the system absorbs appreciable energy in the range 

1 1(10 ) (10 )O Oϖ- < < .  

The dependence of the efficiency 2

opt
1 W-  on /σ Π  is monotonically increasing; the 

higher the value /σ Π  the better the efficiency is. Since 33/ Dh cϖ ≡ H  and 
4~ (10 / )O Pa mH , it is concluded that the piezoelectric material needed for an efficient harvester 
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would be characterized by )/10(~/ 4
3 PamOch D − , having also 2

tk  as higher as possible in order 
that the parameter /σ Π  has a relatively high value.  
 
 

10
-8 10

-6 10
-4 10

-2 10
0 10

2 10
4

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

$

¾=¦

1
¡

j W
j2

 
 

Fig. 5 The efficiency 2

opt
1 W-  of the hydro/piezo/electric harvester, as a function of the two 

dimensionless quantities ϖ  and /σ Π   
 
 

To get a first idea concerning the feasibility of the above requirements in relation with existing 
materials, we have compiled Table 1, showing the corresponding properties of some piezoelectric 
materials. From this Table we see that materials do not meet the flexibility requirement for an 
efficient harvester. An improvement of the flexibility coefficient 33/ Dh c  by (approximately) three 
orders of magnitude is necessary in order that the piezoelectric sheet absorbs enough energy from 
the impinging waves.  

 
Table 1 Piezoelectric properties of some common materials, assuming h = 0.1 m 

 PZT ceramics PVDF polymers 1-3 ceramic(PZT)-
polymer composites 

Cellular 
polypropylenes 

Silicone dow corning 
HS3 (DEAP) 

h/c D33 
(m/Pa) 

10-13 – 1012 i) (1 – 5), 10-11 ii), iii) 10-12 – 10-11 vi) O (5 × 10-8) ii) O (8 × 10-7) vii) 

2
tk  0.22 – 0.40 i) 0.012 – 0.023 iv), v) 0.25 – 0.42 vi) O (3.6 × 10-3) iv) 0.65 vii) 

i) Sherman and Butler (2007), Appendix A.5, ii) Bauer and Bauer (2008), Table 6.1, iii) Bloomfield (1994), 
Table 1, iv) Döring et al. (2008), Table 2,v) Splitt (1996), Table 1, vi) Smith & Auld (1991), Figs. 3 and 4., 
vii)Carpi et. al. (2008), Ch. 4, Table 4.1 
 

/σ Π  

ϖ  

 

 

21 W-  
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7. Conclusions 
 

In the present work, a sea-wave energy absorption system using, as energy harvester, an active 
zone of thickness-oscillating piezoelements installed on a vertical cliff is studied. The considered 
active zone is formed by parallel-connected vertical arrays, each one consisting of piezoelements 
connected in series. The active zone is then connected to an external AC electric circuit modeling 
the consumer load. The analysis of the system performed was restricted to the linear theory for 
both piezoelectric and hydrodynamic subproblems, and has led to a closed form efficiency 
coefficient, optimized with respect to the external resistive load. The main conclusions drawn from 
the obtained solution and its numerical study can be summarized as follows:  

• There are two dimensionless parameters governing the efficiency of the system, namely 
/σ Π  and ϖ . Each of these dimensionless parameters is the product of two factors, one 

of piezoelectric and one of hydrodynamic nature.  
• System’s efficiency W  is strongly affected by the value of parameter ϖ . In fact, W  

exhibits a resonance pattern around the value of 1ϖ ; . 
• System’s efficiency W  is mildly dependent on the parameter /σ Π , exhibiting a 

monotonically increasing behavior.  
• The optimal resistive load takes a large value since )10(~/1 12Ω∝ OCRopt . Similarly 

large values of optimal resistance have been obtained by Guyomar et. al. (2005). 
 

Evaluating the feasibility of the studied system, we state the following:  
• The elastic flexibility 33/ Dh c  of the common piezoelectric materials (see Table 1) is not 

large enough for parameter ϖ  to reach the resonant value. Clearly, it is a question 
towards the material scientists if the advances in material manufacturing could lead to 
electroactive materials exhibiting large flexibility and appreciable coupling factor.  

• Dielectric Electroactive Polymers (DEAP), could offer a solution to this problem. In cases 
of using such materials the modeling of the whole system should be adapted to the physics 
of DEAP.  
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Appendix. Nomenclature 
 

Latin Symbols 
 

( )A ω  coeff. in the piezoelectric solution  
defined by Eq. (28) 

a  piezoelectric force factor of one piezoelement 

0C  clamped capacitance of one piezoelement 

nC  Coeffs. of evanescent sea waves 

E

i jc  elastic stiffness coeffs under constant electric 

intensity 
D

i jc  elastic stiffness coeffs under constant electric  

displacement 

3( ; )iD x ω electric displacement components 

3( ; )iE x ω electric intensity components 

3( ; )ie x ω mechanical strain components 

( )t ωE  generalized energy conversion factor; see Eq. (27) 

g  acceleration due to gravity 
/ 2H  incident wave amplitude 

h  thickness of one piezoelement 

Dh  sea depth in front of the vertical cliff 

H  hydrodynamic coefficient; see Eq. (63a)  
( )I ω  electric current 

nI  integrals of ( )nZ z ’s over 
Dh  

j  the imaginary unit 

nk  eigenvalues of the water wave problem  

(wavenumbers) 
2

tk  piezoelectric energy conversion (or coupling) factor 

2L  length of the active zone 

1
 , 

2
  transverse dimensions of one piezoelement 

1M  number of piezoelements in the vertical direction 

2M  number of piezoelements in the lateral direction 

n


 outward normal unit vector on the  
sea volume boundaries 

( )P f
ω

¥
 net sea wave power flow at a liquid section away 

from the vertical cliff 

( )P f

a ω  net sea wave power flow at the liquid section 

x a;  

piezo
( )Pc ω



net power flowing through the piezoelectric sheet 

( )PZ ω  net electric power consumed by the external circuit 

( ), ;p x z ω hydrodynamic pressure field in the fluid 
R  total resistance of the external AC electric circuit 
S  surface of one piezoelement 
T  period of the oscillating system 
t  time variable 

3 3( ; )u x ω  mechanical displacement  

( )x y z  Cartesian axes for the hydrodynamic  
problem (global Cartesian axes) 

1 2 3( )x x x Cartesian axes for each piezoelement  

(local Cartesian axes)  
( )X ω  total reactance of the external AC electric circuit  

0 1( ) , ( )V Vω ω  voltages at the clamped and the free surface  

of a piezoelement  
W  reflection coefficient of sea waves  
W  electrically optimized efficiency of the system;  

see Eq. (60)  
Y  hydrodynamic coefficient; see Eq. (63b)  

( )Z ω  total impedance of the external AC electric current 

( )nZ z  eigenfunctions of the water wave problem 

( )nZ z  norm of ( )nZ z  in the space ( )2
, 0

D
L h-  

 
Greek Symbols 
 

αβ , γδ  surfaces of one piezoelement 
( )V ω∆  voltage difference between the surfaces of  

 a piezoelement 

( ), ;
f

x z ω∆Φ Laplacian of the hydrodynamic potential 

i jЄ  piezoelectric stress coefficients 

S

i je  dielectric permittivity coefficients  

under constant strain  

, ,R Jλ λ λ see Eqs. (65b) and (68a,b)  

2

0 / gµ ω;  sea wave frequency parameter  

2
µ  see Eq. (73)  
Π  see Eq. (67a)  
ϖ  see Eq. (65a)  

bρ  mass density of piezoelectric material 

fρ  mass density of sea water 

3( ; )i xσ ω  mechanical stress components  
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2
tkσ ; Y  partial hydro/piezo/electric compliance,  

3( ; )
e

x ωΦ


 electric potential inside each piezoelement 

( ), ;
f

x z ωΦ  hydrodynamic velocity potential field 

( ), ;
f

I x z ωΦ  velocity potential of the incident wave 

( ), ;
f

R x z ωΦ  velocity potential of the reflected wave 

( ), ;
f

n x z ωΦ  velocity potential of the evanescent waves 

χ  see Eq. (67a)  

0,Ω Ω  sea volume; see Fig. 1  

0
, , ,

c F Π ∞
∂ Ω ∂ Ω ∂ Ω ∂ Ω



 boundaries of the sea volume;  

 see Fig. 1  
ω  frequency of the oscillating system 
ω  nondimensionalized frequency; Eq. (13b) 
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