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Abstract.    An analytical algorithm for the estimation of the resistance forces exerted on the dipper of a 
cable shovel and the specific energy consumed in the cutting-loading process is presented. Forces due to 
payload and to cutting of geomaterials under given initial conditions, cutting trajectory of the bucket, 
bucket’s design, and geomaterial properties are analytically computed. The excavation process has been 
modeled by means of a kinematical shovel model, as well as of dynamic payload and cutting resistance 
models. For the calculation of the cutting forces, a logsandwich passive failure mechanism of the 
geomaterial is considered, as has been found by considering that a slip surface propagates like a mixed mode 
crack. Subsequently, the Upper-Bound theorem of Limit Analysis Theory is applied for the approximate 
calculation of the maximum reacting forces exerted on the dipper of the cable shovel. This algorithm has 
been implemented into an Excel™ spreadsheet to facilitate user-friendly, “transparent” calculations and 
built-in data analysis techniques. Its use is demonstrated with a realistic application of a medium-sized 
shovel. It was found, among others, that the specific energy of cutting exhibits a size effect, such that it 
decreases as the (-1)-power of the cutting depth for the considered example application. 
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1. Introduction 
 

Cable shovels are widely used in casting ripped or blasted rock, in excavating soils, and in 
large-scale surface and stripping coal or oil sands operations, and other operations as well, due to 
their longevity, high productivity and their ability to exert high break-out forces. The shovel-truck 
mechanized method in surface excavations is flexible, efficient and it can be easily adjusted to 
different operating environments. The efficiency and costs of these operations greatly depend on 
the efficient use of the capital-intensive shovel excavators. However, the shovel-truck excavation 
method may become inefficient due to operating, environmental, and operator constraints. For 
example, data from eight surface mines show that loading costs range from 3% to 35% of 
operating costs with a mean of 15% (Hustrulid and Kuchta 1995). Operator preferences and 

                                                       
∗Corresponding author, Assistant Professor, E-mail: mstavrop@geol.uoa.gr 



 
 
 
 
 
 

M. Stavropoulou, G. Xiroudakis and G. Exadaktylos 
 

practices can lead to inefficiency leading to increased downtimes and lower productivity. 
Paraszczak et al. (2000) proposed real-time or near real-time machine performance measurements 
in order to mitigate the limitations of availability and utilization.  

Hadjigeorgiou and Scoble (1988) critically discussed the optimization of excavation equipment 
selection regarding shovels and draglines, and performance evaluation, for different surface mine 
ground conditions in surface mines. They have asserted that the conventional use of materials 
classification schemes, based on empirical knowledge, can provide an immediate tool to mine 
operators. They have also recommended that this knowledge can be combined with other 
computerized methods of operations research to ensure increased productivity and equipment 
optimization. Most importantly they have commented that it is important to develop more 
elaborate theoretical and experimental studies on the actual mechanics of digging. These studies 
should provide "rational explanations" for digging performance, evaluated from practical 
experience, as well as data from machine performance monitoring. They have concluded that the 
benefit would be seen to arise from the ability to ensure that current excavating equipment be 
employed as productively as possible, whilst also assisting in the development of improved 
equipment design. 

Shi and Joseph (2006) have pointed-out that the ground excavation model is the “heart” of the 
shovel’s model since most operating energy is consumed in this process. Such a model could then 
by used to predict the force distribution on the dipper resulting from the yielding and breaking of 
ground.  

It should be noticed from the outset that there are many factors affecting the digging 
performance and the energy consumption of the various subsystems of the cable shovel, namely: 

 
 the trajectory and capacity of the dipper (Maciejewski and Jarzebowski 2002), as well as the 

design of the dipper and the teeth attached to it (Shi and Joseph 2006), 
 the cutting depth (Karpuz et al. 1992),  
 the speed of the dipper depicted by the hoist and crowd velocities, 
 the physical and mechanical properties of the geomaterials (i.e., jointed rock, soft rock, ripped 

or blasted rock, and soil) being excavated, such as particle (fragment) size distribution, particle 
shape and specific gravity, clay and moisture content, and ambient temperature (for example 
see discussion by Frimpong and Hu (2004) referring to excavation of oil sands by shovels), 

 the repose angle of the bank, among others. 
So, the development of an analytical comprehensive theoretical model for the realistic 

estimation of the cutting force that respects the geometry and trajectory of the dipper of the cable 
shovel, is indispensable for the optimization of cable shovel performance (Awuah-Offei and 
Frimpong 2007). In this context, the interaction between the working tools and the geomaterial has 
been extensively studied by many investigators. Blouin et al. (2001) have presented the most 
recent review of the work in this field. They have commented that the previous works are either 
theoretical or experimental approaches. The theoretical models are based on passive earth pressure 
theory. Most of the assumed tool-ground interaction theoretical models (e.g., Frimpong and Hu 
2004, Awuah-Offei and Frimpong 2007, Lipsett and Moghaddam 2011, Awuah-Offei and Samuel 
Frimpong 2011 among many others) assume a planar failure mechanism (i.e., Coulomb-type) of 
the geomaterial in front of the cutting edge of the dipper, that may be considered approximate in 
most of the cases according to Chen (1975), and according to first principles of Mixed-Mode 
Fracture Mechanics (e.g., in Section 3 of this paper). 
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Herein a simple easy-to-use analytical algorithm for the quick calculation of the cable shovel 
forces required for excavating and loading of the material, for given initial conditions, material 
properties, and machine parameters and motions has been created and then has been implemented 
into an Excel™ spreadsheet. The innovative features of this study have as follows:  

(a) The trajectory of the failure surface is found from simulations considering that the latter 
propagates as a mixed-mode crack; it was found that this shape is a log-spiral. Then the 
Upper-Bound theorem of Limit Analysis Theory for the passive log-spiral mechanism is applied 
for the calculation of the forces exerted on the dipper of the shovel.  

(b) Hence, in this paper a non-planar failure surface inside the bank is considered in contrast to 
previous studies up-to-now. 

(c) The kinematic and geomaterial cutting models have been implemented into an Excel™ 
spreadsheet in order to exploit the “transparency” of calculations obtained in this manner and to 
simplify as much as possible its use; this also emphasizes the fact that the whole model is 
analytical. 

 (d) It was found that the specific cutting energy exhibits a (-1) power relation with the cutting 
depth; this “size-effect” deserves more attention in the future, since it may be exploited for the 
optimization of the performance of a cable shovel. 

The paper has the following structure: Section 2 presents the kinematical model of the cable 
shovel. Section 3 is devoted to the development of the geomaterial cutting model. Then, the 
analytical model that has been implemented into an Excel™ spreadsheet is illustrated in Section 4. 
Subsequently, a realistic example of a cable shovel performance is presented in Section 5. Finally, 
the main conclusions reached from this study are presented in Section 6. 

 
 

2. Kinematics of cable shovel motion  
 

The cable shovel is composed by three major assemblies, namely the lower and upper 
assemblies, and the attachment. The attachment assembly consists of the boom, the crowd 
mechanism, the dipper handle, and the dipper (Fig. 1). The shovel executes four primary motions, 
namely propelling, swinging, hoisting and crowding/retracting. The crowd/retract and hoist 
motions are achieved by the crowd and hoist motors, respectively. A brief description of each 
motion is as follows:  

 
1. Crowd: Moving the crowd arm in and out from the boom (Fig.1) 
2. Hoist: Moving the dipper and crowd arm up and down using the hoist ropes (Fig.1). 

Downward movement is by gravity as the hoist rope length is increased. 
3. Swing: Rotation about the center of the machine’s caterpillar tracks. 
4. Propel: Movement of the entire machine via the caterpillar tracks. 

 
The hoist machinery on the cable shovel consists of a rope drum that is rotated by the electric 

motor-driven hoist transmissions. The crowd motion refers to the motion of the dipper moving 
away from the centerline of the machine and towards the digging face. Digging is accomplished 
when the dipper is crowded (crowd extension) and hoisted up (hoist retraction) through the 
digging face along a trajectory depicted by these two independent motions, as well as by the 
starting position of the dipper. 
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Fig. 1 Cable shovel nomenclature 
 
 
A complete digging phase involves the digging tool (dipper) to the bank, filling it and then 

raising it clear to the bank. Fig. 2 shows a typical shovel dipper trajectory. As it is shown in this 
figure the shovel normally cleans loose material from the start-up (A) to the bench toe (B). 
Subsequently, the shovel dipper teeth engage the formation from B until excavation ends at the 
beginning of the coasting phase (C). During the final coasting phase (C–D) the dipper just moves 
to clear the bank. 
 

 

 

Fig. 2 The three distinct digging phases performed by a cable shovel 
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Hereafter, we consider only the planar motion of the dipper in the vertical plane as it moves 

through the bank (e.g., Fig. 2). More specifically, we consider a two-degrees of freedom (dof) 
model, namely by varying the length 4r  of the crowd arm with a prescribed velocity cu  and the 

length of the hoisting rope 3r  with a prescribed velocity hu , as is shown in Fig. 3(a) while 

keeping always a constant boom length 1r , and in a first approximation considering sheave radius 

equal to zero, i.e., 02 r . The geometry of this two d.o.f. model is depicted in Fig. 3(b). 
 
 

(a) 

(b) 

Fig. 3 Rope shovel degrees of freedom for digging: (a) variable crowd velocity cu  and variable hoist rope 

velocity hu  with positive directions of cu  and hu  as is shown in the figure and (b) two dof kinematical 

model of the excavation system (right). The attachment point of bucket is denoted by Q whereas the bucket 
teeth tip is denoted by R 
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The various length dimensions of the cable shovel at each time step during the digging cycle 
are found from: a) their respective values at the previous time step, and b) the hoist rope and crowd 
velocities by virtue of the following relations 
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wherein the superscript  enclosed in a parenthesis is a positive integer indicating the number 
of time steps elapsed between the initial and current configuration, the dot over a symbol indicates 
differentiation with respect to time and t  is the constant time increment. The inclination of the 
boom 1  (e.g., Fig. 3(b)) is kept constant and is given as an input. The inclination of the hoist 

rope 3  measured anticlockwise, and of the angle 4  subtended between the crowd arm and the 
horizontal (e.g., Fig. 3(b))  that is measured clockwise, are found at each time step from the 
application of sine and cosine rules on the triangle PQS, respectively  
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wherein the superscripts in parentheses have been omitted for simplicity. 
Two models for the estimation of the respective most significant resistant forces exerted on a 

shovel dipper listed by Hemami et al. (1994), are presented in the next sections of this paper. 
Namely, the force required to overcome the weight of the loaded material in the bucket which is 
applied in center of mass of dipper payload O1 (i.e., Fig. 4(a)), and the resistance to indentation and 
cutting acting at the tip of the bucket. The location of the point O1 of the application of the force to 
overcome the weight, referred to a fixed Cartesian Oxy coordinate system, is also important for 
this purpose. The material distribution model illustrated in Figs. 4(a) and (b) was assumed for this 
purpose. These figures show the progressive filling of the bucket with loosened material in front of 
the bucket. The distribution is based on the fact that material once reaching its yield condition 
along certain slip lines will flow from the failure plane over the cutting lip to fill the bucket. This 
model allows the material cross-section at each time step to be approximated as a polygon. The 
vertices of the polygon that encloses the loaded loose material are calculated from the soil failure 
mechanism and the dipper geometry. In Fig. 4(a),   indicates the depth of the side plate inside 
the soil bank, c  refers to the cutting angle of teeth of the bucket, and   denotes the angle of 
the bank.  
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(a) 

(b) 

Fig. 4 (a) Material distribution model and (b) filling process of the dipper during excavation 
 
 
As is shown in Fig. 5, based on basic geometry principles, the cutting angle c  is found at 

each time step to be given by the following relationship 
 

  54vc                                 (4)  
 

wherein v  pertains to the bucket internal angle (Fig. 5), and 5  is the angle subtended 
between the base of the bucket and the crowd arm (e.g., Figs. 3(b) and 5). 
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Fig. 5 Calculation of the cutting angle 
 
 

3. Geomaterial cutting model 
 

3.1 Crack trajectory inside the muckpile 
 
For the creation of a reliable soil cutting model, the first step is to search for a realistic path for 

the propagating slip surface inside the muckpile, due to the penetration of the teeth of the dipper 
into it. For this purpose, we rely on first principles of Linear Elastic Fracture Mechanics (LEFM) 
viewing the thin discontinuity surface propagation inside the material as a classical mixed-mode 
crack propagation problem; it may be remarked here that the modeling of growth of slip surfaces 
in soils by virtue of Fracture Mechanics has been also done by Palmer and Rice (1973). Hence, it 
is assumed that there exists an initial crack occupying the line segment AB that is perpendicular to 
the inclined bucket’s leading (cutting) edge inside the bank, EA, as is shown in Fig. 6. Quasistatic 
crack propagation was simulated by the code G2TWODD (i.e., acronym for Grade-2 
Two-Dimensional Displacement Discontinuity) that is dedicated for fast and accurate calculations 
of Stress Intensity Factors (SIFs), as well as of displacements and stresses in cracked elastic bodies 
(Exadaktylos and Xiroudakis 2009, 2010a and 2010b). The initial crack occupying the line 
segment AB was discretized with ten tractionless linear displacement discontinuity elements of 
equal size. This number of elements has been found to be adequate for our purposes based on the 
repeatability of computed results by using more elements. The rigid wall EA in Fig. 6 was 
discretized with eighteen elements with the same size of the crack elements (since G2TWODD 
method requires elements of equal size) subjected to constant and equal normal and tangential 
tractions sn   , respectively, that are large enough to maintain continuous crack growth up to the 
free surface of the bank. The free surface ED (Fig. 6) was discretized with boundary elements that 
were free of traction. Mode I and II SIF’s, III KK , , respectively, were calculated after each crack 
increment. The crack propagation increment had always the size of the initial crack element size.  
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The fracture propagation criterion was based on the maximum local circumferential (hoop) 
tensile stress   which is given by the following formula (Parker 1981) 
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where  o  denotes Landau’s order-of-magnitude symbol, and K  is the effective stress 

intensity factor given as follows 
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and ,r  denote the pair of radial and tangential polar coordinates, respectively, with centre at 

the crack tip. The crack growth occurs along the direction that K  reaches the critical value of 

mode I SIF denoted by the symbol IcK , as it is depicted by the following relation 
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max                               (7) 

 
The direction of propagation defined as the angle which maximizes the effective stress intensity 

factor and is expressed as a function of the ratio III KK /  
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Eq. (8) can be used to rewrite the condition expressed by Eq. (6) of crack extension into the soil 

bank 
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The use of the maximum local tensile stress criterion is justified since it has been demonstrated 

by virtue of discrete element modeling (Stavropoulou 2006) that during the cutting process, tensile 
forces are exerted locally on the particles along the potential crack trajectory.  

By virtue of the above fracture criterion a quasi-static crack growth simulation may be 
subsequently performed for the prediction of the crack path. For this purpose a step by step 
process is followed. We consider a constant crack length increment a , which is the distance 
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between two consecutive locations in time of the crack tip. Once a  has been chosen, the 
algorithm has as follows: 

1. give the initial crack tip coordinates  i
tipx  for the initial configuration ( 0i );  

2. proceed with the next simulation time step (i+1); 
3. compute the values of the stress intensity factors, IK  and IIK  at the crack tip; 

4. determine the angle of propagation p  using Eq. (8); 

5. update the crack tip coordinates         pp
i

tip
i

tip axx  sin,cos1  ; 

6. return to the step 2 of the algorithm; 
7. continue until the crack tip reaches the free surface of the bank. 

 
From several simulations it was found that the crack follows a logarithmic spiral (logspiral) 

path BC and afterwards continues along a linear segment CD as is illustrated in Fig. 6. In the same 
figure it may be observed that the center O of the polar coordinates ),(   of the logspiral crack 
segment lies at a small distance above the muckpile and is described with the following equation, 

 
   325.0exp15.3                               (9a) 

 
for the particular initial crack, loading and geometry configurations. 
 
 

 

Fig. 6 Crack trajectory (dotted line) resembling a listric normal fault. On this crack trajectory the logspiral 
curve OBC and the line CD are superimposed with continuous lines 

 
 
3.2 Analytical muckpile cutting model 

 
According to the above preliminary analysis, the muckpile cutting process with the shovel 

dipper is modeled by a logsandwich kinematical failure mechanism, as is displayed in Figs. 7(a) 
and (b), and then the limit analysis kinematical method for rigid perfectly plastic geomaterials is 
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applied. The slip lines separating the rigid regions of the mechanism are modeled as stationary 
velocity discontinuity lines. This failure mechanism may be described as follows: 

 
 

(a) 

(b) 

(c) 

Fig. 7 Soil cutting mechanism: (a) the two triangle mechanism projected on the vertical plane normal to the 
blade of the dipper and (b) perspective view of the three failure planes inside the soil bank 
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1) The first rigid triangle ABC (Fig. 7(a)) is formed from the trace BC of the teeth on the 
vertical plane, the trace AC of the shear localization plane extending from the tip of the teeth at 
point C to the free surface at point A that is the intersection of the side plate of the bucket with the 
free surface, and the trace AB that represents the dipper’s leading (cutting) edge inside the bank. If 
the length   of the side plate of the bucket inside the bank, and the length t  of the bucket’s 

teeth are known, then the angle   subtended between the side plate and the failure plane with 
trace AC is also known. 

2) The second region ACD is a logarithmic spiral slip line sandwiched between two rigid 
triangles ABC and ADE.  

3) The second triangle ADE, is formed from the traces AD and AE and a third trace DE that 
is a shear band making an angle   with the horizontal.  

Discontinuities AC and AD are necessary for the accommodation of the continuous 
deformation after the full development of the other three shear bands, namely BC developed in a 
first phase as well as CD and DE, developed in the second and third stages, respectively. The final 
fully developed kinematical failure mechanism is also illustrated in Fig. 7(b). It is worth 
mentioning that the work expended for the penetration of the teeth into the bank of the soil is taken 
into account in this model by the presence of the slip line BC. 

Three angles are needed to describe the full failure mechanism, that is the angles  ,   and 

  for given slope angle of the bank  , and bucket’s alignment  angle   (e.g. Fig. 7(a)). As it 
was mentioned above, the initially formed failure plane BC is parallel to bucket teeth and has a 
length equal to the length of teeth. Hence, the first angle may be easily found in the following 
manner 







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

 t1tan                                 (10)  

    
If the velocities for the two rigid triangles are assumed to be perpendicular to the radial lines 

AC and AD (or to the lines OB and OC in Fig. 7(c)), then only two angular parameters   and 

  describe the mechanism completely. It is noted here that from elementary geometry it can be 
found that the third angle    is given by the relationship 

 




2
                            (11) 

 
Hence, the only remaining unknown angle   may be found by the minimization of the 

resultant passive pressure required to create the assumed failure mechanism inside a 
Mohr-Coulomb material following the associated flow rule and characterized by unit weight , 

cohesion c  and internal friction angle  . In the framework of the passive earth pressure theory, 

the total passive specific pressure Pp  applied to the shovel dipper with zero surcharge load may 
be expressed in a concise manner as follows (Chen 1975) 

 

 sin,
2
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The dimensionless coefficients pcp KK ,  for the logsandwich mechanism accounting for the 

weight and the cohesion of the soil, respectively, could be found by virtue of the upper-bound 
theorem of Limit Analysis Theory which is appropriate for prediction of excavation loads. This is 
achieved by equating the rate of external work performed by the dipper with the rate of internal 
work dissipated on the shear bands AC, BC, CD, AD and DE. The final results for the two cases of 
a smooth and rough tool (wall), respectively, may be found in Chen’s textbook (Chen 1975); 
however, for clarity of the presentation, these expressions with some minor modifications referring 
to corrections of few misprints, as well as to the consideration of velocity of the wall at an 
arbitrary inclination d  w.r.t. the horizontal (e.g., Fig. 7(c))re presented below: 

 
(i) For the case of the smooth wall (   ), where  denotes the interfacial friction angle 

of the bucket-soil contact, we have 
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And 
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 (ii) For the case of a rough wall (   ), we have  
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and 
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The remaining unknown angle   of the log-spiral zone that varies in the range 

 0  could be found by requiring the minimization of the resultant passive pressure 

pP  as is given by Eqs. (12) ÷ (13). It was found that the optimum angle   almost coincides with 

the maximum value which means that the triangle ADE in Fig. 7(a) is very small and it could be 
discarded; therefore, for either smooth or rough wall conditions this angle may be approximated as 
follows  

 
                                 (14) 

 
Finally, the horizontal and vertical components of the passive specific earth pressure denoted 

by P and Q, respectively, are given by 
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PQ

PP
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

sin

,cos
                           (15) 

 
The respective horizontal and vertical components of the cutting force are then found by 

multiplying the above respective specific pressures with the total width of the teeth. It is worth 
noting that in this model the teeth wear that produces tool bluntness could be taken into account by 
appropriately increasing the total width of the teeth. Furthermore, the cutting forces of the side 
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plates are derived by multiplying the above specific pressures with the total thickness of the two 
side plates of the bucket. 

It should be noted that the above solution is not limited only to drained conditions occuring for 
example in dry, coarse grained soils or loose jointed or blasted rocks. In fact Detournay and 
Atkinson (2000) explicitly showed that in the other limiting case of undrained behavior of the 
material under the following assumptions: (a) the material is shear-dilatant, (b) the shear strength 
across the failure surface depends on the effective normal stress, and (c) the pore pressure 
variation in the intact material is governed by the diffusion equation, then the calculated pressure 
drop is very large suggesting a cavitation in the shear zone (i.e., pore pressure in the shear failure 
zone practically vanishes). This means that the cutting forces and the specific energy of cutting are 
independent of the initial virgin pore pressure and the above formulae (12) ÷ (15) hold true also for 
the undrained case.  
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Fig. 8 Calculation of  area of loose material inside the bucket at various time steps and coordinates of 
various points used in these calculations. The line segment CE denotes the next failure plane inside the bank

 
 

4. The analytical algorithm 
 
4.1 The material weight submodel 
 

The payload resistance model is based on the assumptions of material homogeneity and of 
negligible spillage of the material during loading. Furthermore, the calculations are performed in a 
first phase considering a plane model, whereas the dipper width w  and the total width of the 
teeth needed for the calculation of the payload and cutting force, respectively, are incorporated at a 
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latter stage. Also, the failure plane in the material whose trace on the vertical plane is designated as 
CE in Fig. 8, is assumed to be curvilinear, as was also mentioned in the preceding section referring 
to the logsandwich kinematical failure mechanism. 

At each time increment the total payload transported by the dipper is contained in the area 
swept by the dipper up to the current failure plane. This is the area of the triangle ABD plus the 
area of the curvilinear triangle CDE minus the area of the curvilinear triangle ABC defined by the 
trajectory )(xfy   travelled by the dipper. Then, the product of this area with the dipper width 

w  is the volume of the loaded material inside the bucket. Referring to Fig. 8, the desired 
cross-sectional area, cA of the payload, is given by the following relation  
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wherein x denotes the abscissa of the dipper’s tip trajectory referred to a fixed Cartesian 

coordinate system, the subscripts “0”, “t” and “E” denote the starting position, an intermediate 
position at time t and the abscissa of point E, whereas Dy  denotes the ordinate of point D and  

d  the cutting depth in Fig. 8.  
The integral appearing in the above expression (16) may be estimated numerically once the 

coordinates of the points on the trajectory )(xf  of the dipper are known. The latter could be 
found at the kth time step that lies between 2 and N, where N designates the total number of time 
steps of a digging cycle, as follows 
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The weight 1F  of the material in the dipper is thus given by the following relationship 
 

 wAF c1                                  (18)  
 

where  denotes the unit weight of the loose material. 
As it was presented in Figs. 4(a) and (b) the crosssectional shape of dipper’s payload could be 

approximated with a polygon. The Cartesian coordinates  yx,  of the center of mass O1 of the 
loose material inside the dipper could be found by dividing the polygon into n  elementary 
geometrical shapes (i.e., triangles or rectangles) with known center of masses and then applying 
the following relationship  
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where )()()( ,, ii
c

i
c Ayx are the coordinates of center of mass and the area of the simple shape 

 nii ,...,1 , respectively. The same algorithm can be applied for the determination of the dynamic 
coordinates of the centroid of the dipper O2 (e.g., Fig. 4(b)) which is the point of application of the 
force required to move the empty bucket. 

The algorithm for the dynamic material weight subsystem is presented in the flowchart of Fig. 
9 in which N indicates the final number of time steps, and t stands for the number of the time steps. 
The bucket capacity is specified as an input value. The initial cross-sectional area 0cA  for 0t  
is set equal to zero. Null is also the incremental cross-sectional area of the payload either when the 
bucket capacity is reached or the bucket is outside the bank (e.g., for 01 d  according to the 
notation of Fig. 10). 

 
4.2 The material cutting submodel 

 
The only difficulty in this model is the determination of the penetration length  , of the side 

plates of the dipper inside the bank. In order to determine this length the cutting depths 1d  and 

2d  as they are defined in Fig’s 10 a÷e should be first determined. When the dipper’s tip (point R) 

is in the bank, but the point of attachment (point Q) is not (Fig. 10(b)), the length   is given in 
Fig. 10c. Apart from this case, there are three other distinct possibilities: (i) the dipper tip is just 
touching the bank surface (Fig. 10(a)); (ii) both of the dipper’s tip and the point of attachment is 
completely out of the bank (Fig. 10(e)), and (iii) both the tip and the point of attachment are inside 
the bank (Fig. 10(d)). In the first two cases, the bucket side plates are not in the bank and thus   
is null. In the third case, the length  , is equal to total side plate length QR. Finally, the algorithm 
employed for the calculation of   at each time step is described in the flowchart in Fig. 11. 

 
4.3 Specific energies of the crowd, hoist and cutting components of the shovel 

 
In order to answer the question referring to which of the two motors of crowd or hoist is more 

important in performing useful work, we introduce the following definitions of specific energies 
referring to these two actions of the shovel, HC SESE , , respectively.  
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where t  denotes the current time, HC, denote the forces exerted on the crowd and hoist, 

respectively, as is illustrated in Fig. 12(a), and V is the current payload volume in the dipper. 
These forces may be found from the application of the static equilibrium equations on the free 
body diagram of the shovel, as is illustrated in Fig. 12(b) below. For a particular shovel, the hoist 
and crowd forces depend on the kinematics and the bank formation resistance, which in turn 
depends on the bank material properties. 

The equilibrium equations along the horizontal Ox and vertical directions Oy, respectively, take 
the form 
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where yxyx rrrr 4433 ,,,   denote the accelerations of hoist rope and crowd arm along the Ox- and 

Oy-directions, respectively, and are estimated from the following formulae 
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in which as was also previously noted, the superscript )(i  enclosed in a parenthesis is a positive 
integer indicating the number of elapsed time steps corresponding to the current position of the 
dipper, as is illustrated in Fig. 12(c).  
Also an important performance parameter depicting the cutting efficiency of the cable shovel is the 
specific energy of cutting, cSE , which is herein defined in the following fashion 
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where wallW  is the incremental work expended in moving the wall of the bucket during the 

constant time step interval t , V the incremental amount of excavated volume, and 0V  is the 
current velocity of the bucket’s leading (cutting) edge as is displayed in Fig. 7(c). 
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Fig. 9 Flowchart of the material weight model 
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(a) (b) 

 
 

(c) (d) 

(e) 
Fig. 10 Vertical sections of the four distinct cases for the calculation of the side length of the dipper inside 
the bank 
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Fig. 11 Flowchart for the determination of side length of the bucket inside the bank 
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(a) 

(b) (c) 

Fig. 12 (a) Crowd and hoist forces calculation, (b) velocity and force diagrams, and (c) crowd and hoist 
velocities at successive time increments 

 
 

5. Example application 
 

A medium-sized cable shovel is considered with a dipper capacity of 13 m3 and other 
parameters as is shown in Table 1. For clarity of the example, Figs. 13(a) and (b) display the 
geometrical characteristics of the dipper. The initial values of the various parameters involved in 
the calculations are displayed in Table 2. These pertain to the initial coordinates of the points R 
and Q of the bucket as shown in Fig. 3(c), the initial cutting angle 0c , as well as the lengths and 
inclinations of the boom, hoisting rope and crowd, respectively, also indicated in Fig. 3(c). Given 
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in addition the constant soil parameters indicated in Table 3, the payload and geomaterial cutting 
resistance forces among other significant parameters that affect these calculations (i.e., trajectory 
of the dipper, cutting angle etc), may be easily computed by virtue of the algorithm presented 
above.  

 
 

Table 1 Values of the parameters of the shovel, the bank and the algorithm 

Description of parameters Value 

Side plate length QR (see Fig. 3(c))  [m] 2.75 
Dipper angle,   [deg] 90 

Dipper width, w [m] 2.74 

Dipper length, L [m] 2.74 

Dipper capacity, V [m3] 13 

Dipper fill factor [-] 1.1 

Dipper weight [kN] 210 

Side plate thickness, dw [m] 0.0127 

Teeth length, t  [m] 0.1 

Total width of teeth [m] 1.245 
Time step, dt [sec] 0.03 

Bank slope,   [deg] 60 
 
 
 

Table 2 Initial values of the various kinematical parameters 

Parameters Values 

XR0 [m] 4.00 
YR0 [m] 0.00 
XQ0 [m] 4.00 
YQ0 [m] 2.75 

0c [deg] 0 
)0(

1r [m] 15.24 
)0(

3r [m] 20.082 
)0(

4r  [m] 9.059 
)0(

1 [deg] 45.00 
)0(

3 [deg] 70.28 
)0(

4 [deg] 63.8 
)0(

5 [deg] 26.203 
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Table 3 Geomaterial parameters 

Material Properties Value 

Soil-metal interfacial friction angle,   [deg] 35 
Soil unit weight,   [kN/m3] 15 

Soil swelling factor 1.1 
Soil internal friction angle,   [deg] 32 

Soil cohesion, c  [kPa] 15 
 
 

 
(a) 

(b) 

Fig. 13 Geometrical features of the shovel’s dipper in the considered example application: (a) side view of 
the dipper (left sketch) and top view of the dipper (right sketch) and (b) isometric view of the dipper 
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Based on the simulated crowd and rope speeds shown in Fig. 14(a) and the initial values of the 

relevant parameters, the trajectory of the bucket tip with a maximum cutting depth of 
approximately 1.87 m is presented in Fig. 14(b). It is worth noting that the simulated trajectory of 
the dipper has stopped when the payload weight attained its maximum and steady-state value of 
177 kN 

 
 

(a) 

(b) 

Fig. 14. (a) Prescribed hoist and crowd velocities and (b) trajectory of the dipper’s tip 
 
 
Fig. 15 displays the variation of the dipper’s resistance forces with time for the considered 

dipper’s trajectory shown in Fig. 14(b). It may be observed from this figure: (i) that the total 
cutting force is almost solely undertaken by the teeth of the bucket for indentation and excavation 
(continuous line in the graph), rather than by the side plates, and (ii) the payload weight becomes 
equal to the total cutting resistance force close to the end of the cycle of the digging process (i.e., 
in 2.1 sec) and then becomes larger than the former. This was expected since the current sizes of 
the shovels lead inevitably to significant payload resistance force compared to the cutting force. It 
is worth noting from this simulation that the payload weight reaches a steady state of 177 kN 
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before the programmed full cycle of digging operation (i.e., until the trajectory intersect the 
muckpile face in Fig. 14(b)). This shows that there is ample room for digging optimization that can 
be further explored. 

 
 

Fig. 15 Evolution with time of the payload weight 1F , as well as of the total cutting resistance force 4F  

for the side plates, bucket tip separately, and total for the case at hand 
 

 
Fig. 16 shows the evolution with time of the horizontal and vertical components, of the total 

cutting force undertaken by the teeth of the dipper. It is worth observing that the absolute value of 
the horizontal component of the cutting force is always larger than the absolute value of the 
vertical component despite the upwards motion of the dipper. 

 
 

Fig. 16 Variation of horizontal and vertical components of the total cutting resisting force with time for the 
case at hand 
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Fig. 17 displays the evolution of the crowd and hoist specific energies, as well as the specific 
energy of cutting w.r.t. time along the digging-loading cycle for the problem at hand. It is seen 
from this figure that the specific energy of the hoist outweighs that of the crowd along the entire 
digging-loading cycle and this may be attributed to the fact that in the considered example the 
crowd velocity is always lower than the hoist speed. Also, it may be noted that after an initial 
phase in which the hoist motor specific energy is larger than that consumed in cutting, there is a 
second following phase in which both hoist and cutting specific energies attain comparable values. 

 
 

 

Fig. 17 Evolution of hoist motor, crowd motor and cutting specific energies with time 
 
 
Furthermore, Fig. 18 illustrates the variation of the cutting specific energy cSE  of the shovel 

along its whole digging cycle with cutting depth. The specific energy of cutting can be rewritten in 
the following manner 

 

S

F
SE s

c 



                                  (24)  

 
in which SFs ,,  denote the tangential cutting force, the penetration depth and the width of the 

cutting tool that is constant. The cutting force in a first approximation may be assumed to vary 
linearly with the penetration depth (Stavropoulou 2006), that is  

 

)( 2 obaFs                               (25) 
 

where a  is the intercept of the cutting force vs. penetration depth and b  is the slope of the 
linear function. From the above formulae (24) and (25) it is derived 

 
 












S

bSa

S

F
SE s


/

                           (26)  

 

0

100

200

300

400

500

600

700

800

0.0 0.5 1.0 1.5 2.0 2.5 3.0

time [sec]

S
pe

ci
fic

 E
ne

rg
y,

 S
E

 [k
P

a]

Crowd Motor SE [kPa]
Hoist Motor SE [kPa]
Cutting SE [kPa]

49



 
 
 
 
 
 

M. Stavropoulou, G. Xiroudakis and G. Exadaktylos 
 

It is obvious from the above relationship that SE exhibits a (-1) power of the penetration depth 
size effect and the intrinsic SE is given by the term Sb / . This simple model was then verified by 
best-fitting Eq. (26) on the data of the considered example case, as is illustrated in Fig. 18. From 
this analysis it was found that kPaSb 39/   and mkPaa  29 . 

 
 

 

Fig. 18 Variation of the cutting specific energy of the cable shovel with the cutting depth along its 
excavation-loading cycle 

 
 
6. Conclusions 
 

A simplified – albeit analytical – model and algorithm have been presented for the fast 
calculation of forces exerted on a shovel dipper and specific energy of the cutting process. This 
algorithm has been implemented into an Excel™ spreadsheet to assist site engineers for shovel 
operation optimization or to facilitate the fast analysis of real-time monitoring data of shovel 
crowd and hoist motors. It requires no code to be written and is user friendly. The calculation of 
the cutting force is based on a plane strain logsandwich kinematical mechanism and the 
Upper-Bound theorem of Limit Analysis Theory. This failure mechanism was independently found 
from a LEFM analysis of a mixed-mode crack propagation along the soil bank due to passive 
loading of the latter. Also, the specific energies consumed by the crowd and hoist motors, as well 
as by the cutting process itself have been calculated. The specific energy of cutting exhibits a size 
effect, such that it decreases as the (-1)-power of the cutting depth for the considered example 
application. More cases could be analyzed with the proposed algorithm, but this is out of the scope 
of this paper.  

 
 

References 
 
Awuah-Offei, K. and Frimpong, S. (2007), “Cable shovel digging optimization for energy efficiency”, Mech. 

Mach. Theory, 42(8), 995-1006. 
Awuah-Offei,  K. and Frimpong, S. (2011), “Efficient cable shovel excavation in surface mines”, Geotech. 

Geol. Eng., 29(1), 19-26. 

50



 
 
 
 
 
 

Analytical model for estimation of digging forces and specific energy of cable shovel 

Blouin, S., Hemami, A. and Lipsett, M. (2001), “Review of resistive force models for earthmoving 
processes”, J. Aerospace Eng., 14(3), 102-111. 

Chen, W.F. (1975), Limit analysis and soil plasticity, Elsevier Scientific Publishing Company, Amsterdam. 
Detournay, E. and Atkinson, C. (2000), “Influence of pore pressure on the drilling response in 

low-permeability shear-dilatant rocks”, Int. J. Rock Mech. Min., 37(7), 1091-1101. 
Exadaktylos, G. and Xiroudakis, G. (2009), “A G2 constant displacement discontinuity element for analysis, 

of crack problems”, Comput Mech, 45(4), 245-261. 
Exadaktylos, G. and Xiroudakis, G. (2010a), “The G2 constant displacement discontinuity method. - Part I: 

Solution of plane crack problems”, Int. J. Solids Struct., 47(18-19), 2568-2577. 
Exadaktylos, G. and Xiroudakis, G. (2010b), “The G2 constant displacement discontinuity method - Part II: 

Solution of half-plane crack problems”,  Int. J. Solids Structures, 47(18-19), 2578-2590. 
Frimpong, S. and Hu, Y. (2004), “Parametric Simulation of Shovel–Oil Sands Interactions During 

Excavation”, Int. J. of Surface Mining, Reclamation and Environment, 18(3), 205–219. 
Hadjigeorgiou, J. and Scoble M.J. (1988), “Prediction of digging performance in mining”, Int. J. Surface 

Mining, 2(4), 237-244 
Hemami, A., Goulet, S. and Aubertin, M. (1994), “Resistance of particulate media excavation: application to 

bucket loading”, Int. J. Surface Mining, 8(3),125-129. 
Hendricks, C. and Scoble, M. (1990), “Post-blast evaluation through shovel performance monitoring”, 

Proceedings of the Conference on Explosive and Blasting Technique, Canada Centre for Mineral and 
Energy Technology,  227–243. 

Hustrulid, W. and Kuchta, M. (1995), Open Pit Mine Planning and Design, A.A. Balkema: Rotterdam. 
Karpuz, C., Ceylanoglu, A. and Pasamehmetoglu, A.G. (1992), “An investigation on the influence of depth 

of cut and blasting on shovel digging performance”, Int. J. Surface Mining , 6(4), 161-167. 
Lipsett, M.G. and Moghaddam, R.Y. (2011), Modeling excavator-soil interaction, Bifurcations, Instabilities 

and Degradations in Geomaterials, Springer Series in Geomechanics and Geoengineering, 347-366. 
Maciejewski, J. and Jarzebowski, A. (2002), “Laboratory optimization of the soil digging process”, J. 

Terramechanics, 39(3), 161-179. 
Palmer, A.C. and  Rice, J.R. (1973), “The growth of slip surfaces in the progressive failure of 

over-consolidated clay”, Proc. Roy. Soc. Lond. A., 332, 527-548. 
Paraszczak, J., Planeta, S. and Szymanski, J. (2000), ”Performance and efficiency measures for mining 

equipment”, MPES 2000: Proceedings of the 9th Int. Symp. on Mine Planning and Equipment Selection, 
Athens, Greece, 6-9 November. 

Parker, A.P. (1981), The Mechanics of Fracture and Fatigue: An Introduction, E. & F. Spon in association 
with Methuen, Inc., New York. 

Shi, N. and Joseph, T.G. (2006), “A new Canadian shovel dipper design for improved performance”, CIM 
Bulletin, 99, Volume 1 No. 2, March/April 2006, 6 pages. 

Stavropoulou, M. (2006), “Modeling of small-diameter rotary drilling tests on marbles”, Int. J. Rock Mech. 
Min., 43(7), 1034-1051. 

 
 

 
 
 
 
 
 
 
 
 
 

51


